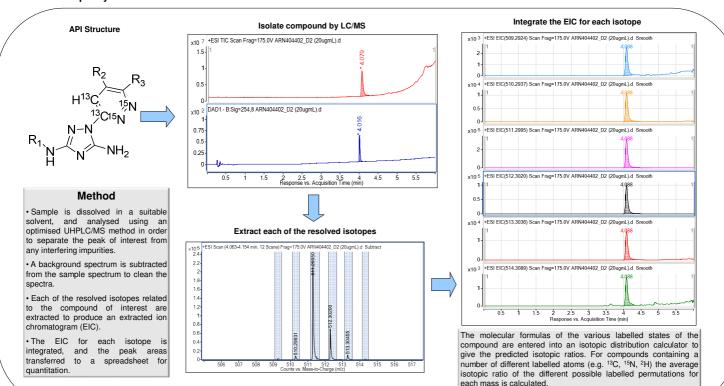
Determination of Isotopic Purity by Accurate Mass LC/MS



Alan Thompson, John Malone Almac Sciences, 20 Seagoe Industrial Estate, Craigavon, Northern Ireland, BT63 5QD

Background

Following the synthesis of isotopic labelled APIs at Almac, or stability testing, it is often necessary to accurately determine the isotopic enrichment of the compounds by mass spectrometry. This process is often complicated if the compound in question contains a variety of labelled atoms, including ¹⁹C, ¹⁵N and ²H, or where the isotopes are radioactively labelled (e.g. ¹⁴C). Advances in time of flight (TOF) mass spectrometry have led to vastly improved resolution between the isotopes of labelled compounds and this has allowed more accurate extraction of these isotopes than ever before. With this high degree of mass accuracy, it is possible to accurately quantify the labelled composition of the compounds in question. A case study for the determination of isotopic purity of a compound manufactured at Almac which contained two ¹³C atoms and two ¹⁵N atoms is presented.

Outline of the impurity isolation and structure elucidation work flow.

$[^{13}\mathrm{C}_{2},^{15}\mathrm{N}_{2}]$ $\mathrm{C}_{28}\mathrm{H}_{34}\mathrm{N}_{6}$ Labelled Sample - Extent Of Enrichment 0 x [13C or 15N] 507 m/z 12082 113.20 11969 3 x [¹³C or ¹⁵N] 510 m/z 4 x [¹³C or ¹⁵N] 511 m/z 5 x [¹³C or ¹⁵N] 512 m/z 53329 4232.10 49097 479750 521866.33 -42116 6 x [13C or 15N] 513 m/z 69673 70856.18 -1183 7 x [¹³C or ¹⁵N] 514 m/s $[^{13}\text{C}_{2,}{}^{15}\text{N}_{2}] \ \text{C}_{28}\text{H}_{34}\text{N}_{6}$ Isotope Relative Abundance Abundano Abundance 100.000 508 509 36.6780 6.5353 35.9362 100.0000 6.2701 0.7076 0.0581 0.0036 35.1944 6.0108 0.6636 0.0532 0.0032 100.0000 33.7108 5.5047 0.5800 0.0443 [13C₂,15N₂] C₂₈H₃₄N₆ Labelled S Natural isotope corrected counts 0 x [¹³C or ¹⁵N] 507 m/z 1 x [¹³C or ¹⁵N] 508 m/z 2 x [¹³C or ¹⁵N] 509 m/z 315 0.02 12082 113.20 0.75 11969 9.20 3 x [13C or 15N] 510 m/z 53329 4232.10 49097 3.07 384.67

Data Processing

- In order to remove the natural isotopic contribution of the elements present in the various labelled isotopes from their adjacent isotopes, it is first necessary to determine the level of natural contribution.
- Natural isotopic contributions from preceding peaks (i.e. ¹³C) are calculated in the adjacent table using data obtained from the theoretical spectra. These are then subtracted from the peak area value of subsequent isotopes, allowing the identification of the natural isotope corrected value, and thus allowing the determination of the true extent of enrichment.

Results

The relative percent of isotopic enrichment is calculated for each isotope species in the compound along with the overall isotopic purity. In the current example, 96.17% of the compound was found to be fully enriched, whilst 3.07% contained 3 labelled atoms (i.e. 2 x 15 N and 1 x 13 C, or 1 x 15 N and 2 x 13 C) and less than 1% contained 2 labelled atoms (i.e. 2 x 15 N, or 1 x 12 C and 1 x 15 N, or 2 x 13 C). This equated to 98.84% of the potential labelled positions in the compound being occupied by labelled atoms.

Conclusion

Mass spectrometry has been proven to be a very useful technique in accurately quantifying the level of enrichment in labelled compounds. Improvements in baseline resolution between isotopes facilitated by TOF-LC/MS has reduced isotopic overlap between neighbouring isotopes, reducing erroneous results. Furthermore, alignment with LC/MS also makes it possible to remove interferences, perform sample purity and the identification of unknown impurities within the same analysis.