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ABSTRACT: Chiral amines are valuable building blocks for the pharmaceutical industry.
@-TAms have emerged as an exciting option for their synthesis, offering a potential “green
alternative” to overcome the drawbacks associated with conventional chemical methods. In
this review, we explore the application of @w-TAms for pharmaceutical production. We
discuss the diverse array of reactions available involving @-TAms and process
considerations of their use in both kinetic resolution and asymmetric synthesis. With the
aid of specific drug intermediates and APIs, we chart the development of
®-TAms using protein engineering and their contribution to elegant one-pot cascades
with other enzymes, including carbonyl reductases (CREDs), hydrolases and monoamine
oxidases (MAOs), providing a comprehensive overview of their uses, beginning with initial

applications through to the present day.
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1. INTRODUCTION

1.1. Background

The pharmaceutical industry has benefited from the widespread
application of biocatalysis in recent years.' > Chemical
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approaches to pharmaceutical production often have a number
of drawbacks, including harsh reaction conditions, the need for
toxic transition metal catalysts and volatile organic compounds
(VOCs), primarily solvents, and insufficient stereoselectivity in a
single step.® As well as possessing excellent enantioselectivity, the
ability of enzymes to operate in aqueous media and at ambient
temperature and pH’ mean they are seen as a potential “green
alternative” to metal-catalyzed reactions.® Increasing awareness
of environmental issues and the search for renewable substitutes
indicates the growth of biocatalysis in the pharmaceutical
industry looks set to continue. The global market for industrial
enzymes is expected to reach nearly $7.1 billion by 2018,
representing a five-year compound annual growth rate (CAGR)
of 8.2%.”

Chiral amines are one such example of compounds whose
production has benefited from the use of biocatalysis. It is
estimated that 40% of current pharmaceuticals contain an amine
functionality,” making these compounds valuable building blocks
in the pharmaceutical industry. The most recognized chemical
method for chiral amine production is via hydrogenation of a
Schiff base," although other methods have also been employed,
including diastereoisomeric crystallization, C—H insertion, and
nucleophilic addition.” Biocatalytic approaches to the production
of optically active amines initially involved hydrolases,' " although
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more recently other enzymes such as lyases, oxidases, and trans-
aminases (TAms) were studied for this purpose.’

TAms are enzymes which catalyze the transfer of an amine
group from an amine donor to a ketone or aldehyde.” In nature,
the transfer of an amine group from a a-amino acids to a-keto
acids is the primary role of transaminases, with the ubiquitous
occurrence of transaminases showing the vital role they play
in the nitrogen metabolism of all organisms.''* Several excellent
reviews have examined transaminases from a variety of per-
spectives,””'>'*~*! showing these enzymes to be highly versatile
biocatalysts for the synthesis of chiral amine and a-amino acids.**
Celgene spearheaded the use of TAms to resolve racemic
amines as well as direct chiral synthesis in an industrial setting in
the late 1980’s.”” Both (R)- and (S)-selective TAms, capable of
aminating prochiral ketones to a number of phenyl methylamines
in >90% yield, were developed. This work was advanced in an
academic setting by the work of Shin and Kim, beginning in the
1990's.247%

This review will focus specifically on the use of TAms for the
production of chiral amines for the pharmaceutical industry. This
includes chiral amines as both active pharmaceutical ingredients
(APIs) and as intermediates in API syntheses, providing a com-
prehensive overview of their uses from their initial application in
the late 1980’s to the present day.

1.2. Reaction Mechanism

TAms require the vitamin By derivative pyridoxal-S” phosphate
(PLP) 1 as a cofactor. PLP is extremely versatile, with its electron
sink nature enabling a vast array of chemistry. This ability to
delocalize the excess electron density surrounding the deproto-
nated a-carbon of the reaction intermediate allows PLP to act as
a cofactor in reactions, including transamination, decarboxyla-
tion, racemization, elimination, substitution, and ring opening.28
The TAm reaction is divided into two half reactions: oxidative
deamination of an amine donor and reductive amination of an
amine acceptor’ (Figure 1). In the first half of the reaction, the
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Figure 1. General schematic of a TAm-catalyzed reaction, highlighting
the role of PLP as cofactor.”

amine group is transferred to an enzyme-PLP (E-PLP) complex,
resulting in the generation of a pyridoxamine-5’ phosphate (PMP)
2 form of the enzyme (E-PMP) and corresponding ketone. In the

second half of the reaction, the amine group of PMP is transferred
to an acceptor substrate, leading to the formation of an amine and
the regeneration of PLP.° The regeneration of PLP means that
only catalytic amounts of this cofactor are required. This reaction is
also readily reversible, with the extent of conversion based on
which reactants are in excess. A quantum chemical study of the
reaction mechanism of @-TAm from Chromobacterium violaceum
was carried out by Cassimjee et al,, providing an in-depth look at
the half-transamination of (S)-1-methylbenzylamine (MBA) to
acetophenone and characterization of the associated interme-
diates.””

The architecture of the TAm active site was proposed by
Shin and Kim in 2002 based on the relationship between substrate
structure and reactivity, using a transaminase from Vibrio fluvialis
JS17.%° A two-site binding model consisting of a large (L) and
small (S) pocket was proposed to explain substrate specifi-
city and stereoselectivity. Key factors for activity were deemed
to be the recognition of both hydrophobic and carboxylate
groups by the L pocket, while the S pocket repelled carboxylate
groups strongly. The S pocket was found to be critical in
substrate recognition, as steric constraint at this part of the active
site prevented bulky substituents from binding. Further work
by Park and Shin in 2011 suggested active site residues in the
S pocket were involved in binding but not significantly in the
catalytic step.”’ Using this reasoning, the S pocket could be
redesigned to relieve steric constraint and thereby accept more
bulky substituents for catalysis.

1.3. Classification

TAms (EC 2.6.1.x) can be classified as either a-transaminases
(a-TAms) or w-transaminases (w-TAms) based on the position
of the amine group being transferred relative to the carboxyl
group of the substrate.”> a-TAms require the presence of a
carboxylic group in the a- position to the carbonyl functionality.”
Hence, a-TAms only allow for the formation of @-amino acids.™
®-TAms represent all other TAms (i.e., those in which at least
one of the two substances is not an @-amino acid or a-keto
acid).34 @-TAms are able to aminate keto acids, aldehydes, and
ketones.’” In fact, they can in principle accept any ketone or
amine and are therefore considered much more useful and
generally of higher interest to the pharmaceutical industry.”*®
They have the advantage of a higher equilibrium constant versus
their alpha- counterparts and possess many benefits over hydro-
lase and dehydrogenase enzymes, including broad substrate
specificity, high enantioselectivity, and no requirement for
cofactor 1‘egeneration.24’26’30 ®-TAms have been subdivided
into two further groups, /-TAms and amine transaminases
(ATAs), the latter proposed by the Bornscheuer group and often
used as a synonym for ®-TAms.*® @-TAms have been shown
to possess excellent regioselectivity, exhibiting the ability to
selectively convert a single ketone moiety in a di- or triketone
system in a more complex molecule.””**

TAms can also be classified under the umbrella of PLP-depen-
dent enzymes, based on fold-type and alignment of amino acid
sequences.”” "' PLP-fold types I (aspartate aminotransferase
superfamily) and IV (D-alanine transaminase family) contain
TAms. As well as using PLP-fold types, TAms can be divided into
six classes based on structural features and sequence similarity. "
Subgroups I, II, and IV are all a-TAms, whereas subgroup III
contains only @-TAms.

The following sections will focus exclusively on w-TAms and
their application in the production of APIs and their inter-
mediates. A number of concepts will be explored regarding
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process considerations for TAm-catalyzed reactions. The com-
bination and application of these concepts will be illustrated
using pertinent examples from the pharmaceutical industry, with
-TAms playing a pivotal role in each case.

2. PROCESS CONSIDERATIONS FOR USING TAMS IN
CHIRAL AMINE SYNTHESIS

2.1. Types of TAm-Catalyzed Reaction

Production of chiral amines by @-TAms can be brought about
via different approaches, namely kinetic resolution (KR) of a
racemate and aszrmmetric synthesis from the corresponding
prochiral ketone.”

Using an enzyme’s enantiopreference to selectively act on one
isomer of a racemic mixture, KR can be used to produce enantio-
enriched compounds (Figure 2A). This results in a maximum
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Figure 2. Reaction schematic showing (A) TAm-catalyzed KR of a
racemic amine using pyruvate as an amine acceptor, and (B) asymmetric
synthesis of a chiral amine from a prochiral ketone using L-alanine as an
amine donor.

theoretical yield of 50% of the desired isomer. Direct asymmetric
synthesis of a chiral amine from its corresponding prochiral
ketone however can produce a theoretical yield of up to 100%*
(Figure 2B). As such, asymmetric amination of ketones should
be preferred to the KR of amines™**** and direct synthesis is
highly desired in pharmaceutical manufacture.”” @-TAms can
be employed for either asymmetric synthesis of amines from
the corresponding ketone or for the KR of amines.” »-TAms are
among a small number of enzymes capable of the stereoselective
amination of ketones, further emphasizing their value in this area.

There are a number of recent examples involving w-TAms in
asymmetric synthesis of pharmaceutical intermediates. 17-a-
Amino steroids are interesting non-natural products used as
intermediates in the preparation of pharmacologically relevant
steroids. An (R)-selective @-TAm derived from Arthrobacter sp.
was used to aminate a prochiral ketone substrate 3 to an amine
intermediate 4 (Table 1), enabling a 9-fold yield increase and a
reduction in processing stegs from three to one versus the
existing chemical approach.”

The same evolved variant of this enzyme was used in the
asymmetric synthesis of the dual orexin receptor antagonist,
suvorexant 5 (Table 1). Orexin A and B neuropeptides play a
central role in sleep cycle regulation and anta§onism has been
found to promote sleep in a number of species.”” Amination of a
prochiral ketone 6 catalyzed by w-TAm with subsequent ring

annulation, afforded the diazepane ring shown in structure 7, a
key feature of suvorexant (Table 1). This obviated the need for a
toxic transition metal catalyst and the use of dichloromethane as
a solvent, significantly reducing the environmental impact of the
process.”” The intermediate for another dual orexin receptor
antagonist, MK-6096, was prepared using an (R)-selective @-TA.
ATA-117 catalyzed the reaction for the synthesis of the required
chiral lactam intermediate from a prochiral keto-ester. This
reaction proceeded with full conversion to the (R)-amine 8 but
perhaps more importantly demonstrated the scalability of a
@-TAm-catalyzed process to a multikilogram scale*® (Table 1).

(R)-Selective »-TAms have been employed in the asymmetric
synthesis of a number of other intermediates for APIs, among
them the antihypertensive dilevalol 9 and the potent
bronchodilator formoterol* 10 (Table 3).

2.2. Choice of Amine Donor

Owing to its widespread acceptance by enzymes and the various
options to remove the pyruvate coproduct, alanine has proven
popular as an amine donor for TAm-catalyzed reactions.'® How-
ever, the use of alanine results in an unfavorable reaction
equilibrium, which is far on the side of the starting material.'®

This has, in part, driven the search for other suitable amine
donors, such as isopropylamine (IPAm) (Figure 3A). Its accept-
able chemical price’® ™" and the ease with which byproducts can
be removed, means the use of IPAm as a sacrificial amine donor
represents a significant advance in improvement of conversion
rates.”

The basicity of IPAm can lead to unwanted side reactions, as
observed in the production of the antiallergic drug ramatroban™’
11. The subsequent use of the more sterically demanding
(R)-(+)-a-methylbenzylamine (MBA) as amine donor led to a
decrease in side product formation in the preparation of inter-
mediate 12, also avoiding the need for lipases and oxidor-
eductases in the process®* (Table 1).

Recently, the O’Reilly group have developed a new generation
of “smart” amine donors.””*® These diamine donors have the
ability to form aminoaldehydes which can dimerize or cyclize
following transamination. This effectively removes one reaction
product from the mixture, helping to overcome product
inhibition and shift reaction equilibrium toward further product
formation. With one such donor, cadaverine 13 (Figure 3B), 94%
conversion of acetophenone to MBA was achieved using enzyme
ATA256, compared with only 44% when IPAm was employed as
amine donor.*

Similar work was reported by Baud and Almac using the
amine donor 2-(4-nitrophenyl)ethan-1-amine 14 (Figure 3B).
On deamination to the corresponding aldehyde, an imine is
formed which tautomerizes as a red precipitate.”” As well as an
improved reaction equilibrium, the color change brought about
enables this reaction to be used as a high-throughput colorimetric
assay for the detection of TAm activity.

In a recent study by Voges et al,, the reaction equilibrium of
the w-transamination of the commonly applied amine donor
(S)-MBA was investigated.58 This characterized the influence of
a number of factors on reaction equilibrium, including tempera-
ture, pH, and reactant concentrations.

2.3. Protein Engineering and in Silico Design

The bulky side groups™ and inherently low reactivity of
many ketones,” along with narrow substrate scope of wild
type enzymes,” present other challenges for »-TAm-mediated
asymmetric synthesis. Such problems have led to the emergence
of protein engineering of w-TAms as a solution. Several excellent
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reviews have highlighted the advances in protein engineering of
biocatalysts, among them TAms.*~%

One of the most successful example of w-TAm use in the
pharmaceutical industry, encompassing many of the concepts
mentioned previously, is that of the antidiabetic drug sitagliptin 15.
In this case, a homologue of the (R)-selective w-TAm ATA-117

from Arthrobacter sp. was used in the direct asymmetric synthesis
of chiral amine sitagliptin from its corresponding prochiral ketone,
prositagliptin®® 16 (Table 1). Initially the enzyme was unable to
bind to the substrate due to steric constraints caused by the bulky
side groups of the prositagliptin ketone. Through use of in silico
design and directed evolution, a substrate walking approach was

Table 1. Examples of Asymmetric Synthesis of Chiral Amine-Containing Pharmaceuticals from Prochiral Ketones Involving -

TAms
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Table 1. continued
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employed to engineer the large binding pocket of the enzyme’s
active site, with further evolution of the enzyme directed at
improving activity toward prositagliptin.

The resultant effect was a reaction which proceeded with
92% yield (>99.95% ee), contributing to a process providing
sitagliptin with a 10—13% increase in overall yield, 53% increase
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Figure 3. (A) Commonly used amine donor molecules. (B) Examples
from the new generation of “smart” amine donor donor molecules.”*’

in productivity and 19% reduction in total waste. This @-TAm-
catalyzed system was able to replace the existing rhodium-
catalyzed asymmetric enamine hydrogenation, negating the need
for toxic heavy metals and expensive high pressure specialized
hydrogenation equipment.®”

This example also illustrates the use of IPAm as a sacrificial
amine donor and subsequent removal of acetone coproduct,
creating a more favorable reaction equilibrium.

This process was developed further by the same group with
immobilization of this enzyme on a polymer resin. Again, activ-
ity in organic solvents was demonstrated, along with multiple
rounds of enzyme reuse with minimal loss of activity.”® Further
investigation of the rational design involved in this example was
undertaken by Guan et al,”” highlighting a specific target for
rational design as a means of altering substrate specificity of ATAs.

Work by the Moody group demonstrated the applicability
of rational protein engineering to an industrially relevant
(S)-selective TAm from V. fluvialis (Vf-0-TAm).*® The wild-type
enzyme showed no catalytic activity toward the bulky ketone
2-acetylbiphenyl. Using a combination of computational model-
ing and rational mutagenesis, Vf-w-TAm was engineered to
convert 17 to its corresponding amine 18 with 42% (>99% ee),
representing >1716-fold increase in activity (Figure 4). By
modeling the enzyme in the presence of the PMP intermediate
and focusing on enlarging the large binding pocket, in total only 7
mutations were required to bring about these improvements.
As well as being larger than the substrates studied in previous
research, no activity had previously been shown toward ketone
17 by the well-characterized Vf-w-TA. Critically, this work shows
that initial weak promiscuous activity toward a substrate is not
always necessary for enzyme evolution. Instead, selecting fun-
ctionally relevant mutations and combining these with multi-
step rational mutagenesis can provide a more efficient pathway
for protein engineering.”® As well as providing an excellent
example of expanding substrate scope in a currently scarce list of
successes, this study could have a significant influence on the
approach adopted for enzyme engineering for the biocatalysis
industry going forward. Similar work was carried out by the
Bornscheuer group, with rational protein engineering of key
motifs allowing for increased activity of (S)-selective TAms
toward substrates bearing bulky substituents.”””" The Berglund
group have also demonstrated the ability of rational design
to alter the enantiopreference of given TAms.”"”* Such an
approach could be used to help alleviate the need for novel (R)-
selective TAms.

There are a number of other recent examples of the use of
protein engineering of TAms to improve asymmetric synthesis
of pharmaceuticals.”>~”> In one such example, Vf-0-TAm was
subjected to protein engineering in order to improve synthesis of

A

o

17

Figure 4. (A) Schematic showing (S)-selective TAm-catalyzed reaction converting 2-acetylbiphenyl 17 to (15)-1-(1,1’-biphenyl-2-yl)ethanamine 18
employing IPAm as amine donor. B. MD reference structure of ketone 11 docked to V. fluvialis TAm with mutations W57F/R88H/V153S/K163F/
1259M/V422A/R415A in the presence of PMP. The active center residues are represented by sticks with the carbons of chain A (green ribbon) colored
in gray and the carbons of chain B (cyan ribbon) colored in cyan. Relevant distances are shown (in units of A). The MD reference structure corresponds
to the structure with lowest root-mean-square deviation (RMSD) (a-C atoms), relative to the average structure of the simulation. No significant changes

were observed in the MD replicas.*®
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(35,5R)-ethyl 3-amino-S-methyloctanoate 19, an intermediate
for the anxiolytic imagabalin 20 (Table 1). The resultant effect
was a significant optimization in selectivity and activity, shown by
a 60-fold increase in initial reaction.”

Computational data mining has aided the discovery of novel
biocatalysts. Most TAms published to date are (S)-selective, but
an in silico approach using the Brookhaven protein database has
yielded a number of (R)-selective TAms,*® with experimental
confirmation and application in asymmetric synthesis, demon-
strating their usefulness as biocatalysts.*>’*”” Undoubtedly in
silico design of enzymes is a significant advance for the bio-
catalysis industry. Its limitations lie in the difficulty of accurately
predicting function based on structure alone. This is pointedly
true of PLP-dependent enzymes such as TAms. Christen and
Mehta (2001) proposed that PLP binding developed first, and
reaction specificity was evolved before substrate specificity.”®
Furthermore, genomic analysis of PLP-dependent enzymes
showed there are fewer genes encoding PLP-dependent enzymes
than there are PLP-catalyzed reactions required by an organism’s
metabolism.”” Further studies confirmed reaction and substrate
promiscuity occur across all PLP fold types,**™** highlighting
that structure—function prediction can be complicated. In other
words, some closely related enzymes do not always accept the
same substrates, and some enzymes of very low sequence simi-
larity sometimes do.”” In that sense, while in silico data mining
has proven to be extremely useful, its associated difficulties mean
it is not as yet the silver bullet for novel biocatalyst discovery.

2.4, Further Improvements to the Process

A number of additional techniques have been incorporated
into TAm-catalyzed syntheses with a view to optimizing systems
for pharmaceutical production. In one such example, a @-TAm-
catalyzed process was developed for the production of a pro-
staglandin receptor CRTH?2 antagonist, a potential therapeutic
for allergic inflammatory diseases such as asthma and atopic
dermatitis.** Screening of an in-house library of TAms developed
for sitagliptin as discussed previously, allowed Merck to uncover
an enzyme (CDX-017) capable of transaminating the relevant
ketone intermediate 21 with 80—81% yield (98—99% ee)™*
(Table 1).

Optimization of this process was promoted by the use of a
constant nitrogen sweep of the reaction vessel. This eliminated
the formation of an oxidation byproduct arising from a-hydrox-
ylation of ketone under basic conditions. As seen in other
examples, the acetone byproduct was removed to improve reac-
tion equilibrium. Furthermore, the reaction mixture was acidified
following conversion in order to precipitate the enzyme and
facilitate its removal via filtration. Use of @-TAm contributed to a
reduction in processing steps from 18 to 9, with an improvement
in overall yield from 10% to 49%.**

The ability of TAms to retain activity in organic solvents is a
commonly observed characteristic of these enzymes. Pro-drug
silodosin 22 is used in the treatment of dysuria associated
with benign prostatic hypertrophy (BPH). Biocatalytic asym-
metric synthesis of a silodosin intermediate using ®w-TAm from
Arthrobacter sp. offered a more economically viable alternative to
the current inefficient approaches requiring multiple crystal-
lization steps.”> However, as the ketone substrate was almost
insoluble in water, DMF was used as a cosolvent to improve the
reaction process and substrate loading. The stereochemical
outcome was unaffected, affording the desired (R)-enantiomer in
high yield (>97%) and enantioselectivity (>97%)*° (Table 1).

2.5. Product Inhibition and Pyruvate Removal

Transamination reactions are not without drawbacks. Accu-
mulation of coproduct inhibits the reaction from proceeding,
rendering the process unsuitable at high concentrations.”**”>*
In order to overcome this issue, strategies for removal of the
ketone byproduct were investigated. The first technique intro-
duced involved the use of an aqueous/organic biphasic reaction
system, with the extraction capacity and biocompatibility of
different organic solvents investigated for their ability to resolve
a-methylbenzylamine (@-MBA).** A hollow-fiber membrane
contractor was employed to further advance ketone extraction
for the preparation of enantiopure arylalkyl amines.”” Strategies
employing other enzymes to remove the ketone coproduct have
also been investigated. Many of these strategies focused on the
removal of pyruvate, the ketone byproduct formed with the
use of alanine as amine donor. The removal of pyruvate shifts
the reaction equilibrium toward product formation and allows
the reaction to proceed to completion. Lactate dehydrogenase
(LDH) was used to convert pyruvate to lactate. However,
as LDH requires the cofactor NADH, glucose dehydrogenase
(GDH) and glucose were added to regenerate the cofactor and
allow the reaction to continue®® (Figure SA). This system was
modified by Truppo et al. to create a rapid and high throughput
screening technique for -TAm activity.®” In this example, a pH
indicator dye (phenol red) was added, the gluconolactone
produced from glucose and GDH caused a drop in pH and sub-
sequent color change. The degree of color change correlated
closely (within 5%) with the product formation from the
@-TAm-catalyzed reaction.®” A number of similar examples have
been developed which act as high throughput screens for TAm
activity and have recently been reviewed by Mathew et al.**

Fuchs et al. developed a chemoenzymatic method for the
preparation of (S)- rivastigmine 23 (Table 3), involving @-TAm
from V. fluvialis (Vf-w-TAm), incorporating such an LDH/GDH +
NADH recycling system for the removal of pyruvate.”

Rivastigmine is one of the most effective medications used to
treat patients with Alzheimer’s disease as well as dementia
associated with Parkinson’s disease, with the desired cholinester-
ase inhibition brought about by the (S)-enantiomer. The use of
(S)-selective Vf-w-TAm allowed for the desired isomer in opti-
cally pure form to be prepared with the shortest route, replacing
previously more complex syntheses.

Also in this study, an (R)-selective @-TAm (ATA-117) was
used in place of Vf-®w-TAm to produce (R)-rivastigmine,
demonstrating the flexibility in enantioselectivity @-TAms can
afford. Moreover, this example highlights the approach of com-
bining biocatalysis with common chemical transformations,
a phenomenon which is on the increase.”””” Several reviews
focus on chemoenzymatic applications in the pharmaceutical
industry. %%

The same group improved (S)-rivastigmine production via
introduction of a carbamate pharmacophore early in the process,
avoiding the need for protective group strategies. In this case, a
novel w-TAm from Paracoccus denitrificans was needed to
convert the prochiral ketone substrate, 3-acetylphenyl ethyl-
(methyl)carbamate, to the corresponding amine intermediate in
999% ee and >80% conversion.”

Alanine dehydrogenase (AlaDH) has also been extensively
employed to convert pyruvate back to alanine,>">?77102 having
the double effect of not only removing pyruvate to create a more
favorable reaction equilibrium but also regeneration of the amine
donor. A recent publication combining an alanine racemase
(AlaR) enzyme with AlaDH, allows for recycling of pyruvate to
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1-alanine, followed by conversion to racemic alanine'*® (Figure SB).
In this way, the more expensive D-alanine can be generated from the
racemization of the cheaper L-alanine, allowing aminations catalyzed
by (R)-w-TAms.'”

The combination of @-TAms with pyruvate decarboxylase
(PDC)'** for asymmetric synthesis represents another option
for improving product formation. This system possesses the
added advantages that cofactor recycling is not required, as well
as an irreversible shift in equilibrium due to loss of the carbon
dioxide byproduct'** (Figure 5C). A three enzyme system con-
sisting of @-TAm, alcohol dehydrogenase (ADH), and GDH was
also employed for the KR of a-MBA, resulting in optically pure
(R)-MBA and (R)-1-phenylethanol'®® (Figure 5D).

Another elegant approach to minimize pyruvate concentration
was reported by Truppo et al,, emgloying an amino acid oxidase
(AAO) along with an ®-TAm"’ (Figure SE). This example
differed from those previously mentioned, in this case actively
adding pyruvate for use as an amine acceptor to the reaction mix,
as opposed to its formation as a byproduct. A high concentra-
tion of pyruvate would still inhibit the enzyme and lead to an
unfavorable equilibrium. Through use of an AAO, the alanine
formed could be recycled back to pyruvate, meaning only
catalytic amounts of pyruvate would be needed.

Undoubtedly enzymatic removal of inhibitory byproducts is a
highly useful and successful method of manipulating reaction
equilibria to increase product formation. This has not only been
applied to TAm-catalyzed reactions but also in a multitude of
biocatalytic reactions with other enzyme classes.'”” As we have
seen when IPAm is used as an amine donor, there are other
methods for removal of unwanted side products. Shin and Kim
introduced a biphasic reaction system for removal of coproduct
in the asymmetric synthesis of unnatural amino acids using an
-TAm from V. fluvialis J$17.'"® Using 2-oxobutyric acid as a
starting point, L-2-aminobutyric acid was synthesized utilizing
benzylamine as an amine donor. The choice of benzylamine
meant benzaldehyde was formed, consequently leading to potent
product inhibition. This was removed through use of a biphasic
reaction system, with hexane employed as an extractant for
benzaldehyde, allowing the reaction to continue and greatly
increasing conversion rates from 39 to 96%.'® The unnatural
amino acid produced could be applied in the synthesis of
levetiracetam 24 (Table 3), an anticonvulsant drug used for the
treatment of epilepsy.

2.6. Simple KR and Deracemization (Dynamic Kinetic
Resolutions and Other)

The relatively modest yields associated with KRs (max
theoretical yield of 50% vs up to 100% by asymmetric synthesis)
represent an economically more undesirable use of @w-TAms.
Despite this drawback, simple KRs have been applied to the
production of chiral amines from a racemic starting point, such as
the production of (R)-sec-butylamine 25 (Figure 6) and (R)-1-
cyclopropylethylamine.'®” These molecules are important inter-
mediates for corticotropin releasing factor (CRF-1) antagonists,

which have been proposed as novel therapeutics for the treat-
ment of depression and anxiety.'"™""* Use of an (S)-selective
TAm from Bacillus megaterium was able to produce the above
(R)-isomers via KR, proceeding with 46% yield (theoretical max
50%) and 99% ee.'”

Development and improvement of these processes to enable
full conversion of a racemate to a single enantiomer has led to
important applications in the pharmaceutical industry.''*~"''®
Conversion of the unreacted isomer back to the racemate, either
actively or spontaneously, allows further resolution, producing
the desired enantiomer. This process, known as dynamic kinetic
resolution (DKR), is an example of deracemization, producing a
theoretical yield of up to 100%.''” DKR has been used to
produce intermediates of 3-arylGABA (y-aminobutyric acid)
derivatives,"* which are known to play an important role in the
central nervous system. DKR of 4-0xo-3-phenylbutyric acid ethyl
ester 26 by the (R)-selective ATA-117 TAm was used to form
(R)-4—22.5 phenylpyrrolidin-2-one 27, an intermediate to a
3-arylGABA derivative''* 28 (Figure 7).

DKR was also employed in the production of an intermediate
29 to niraparib, a poly(ADP-ribose)polymerase inhibitor cur-
rently under development for the treatment of ovarian cancer.''
As well as being the first kilogram-scale production of the
niraparib molecule, this example also shows the use of »-TAm in
combination with C—N coupling, as well as using an aldehyde as
a substrate for the transaminase reaction (Figure 8).

The application of DKR in conjunction with asymmetric
synthesis is exemplified by a process developed by Pfizer, in
which a TAm is used to produce an intermediate molecule 30 for
a smoothened receptor (SMO) inhibitor''® 31. SMO is a
receptor in the hedgehog (Hh) signaling pathway, and its
inhibition represents a viable therapeutic target in the treatment
of a range of human cancers. Despite the compound’s excellent
potency and bioavailability as an oral preparation, production
processes suffered from both safety concerns and difficulty in
scale-up. Enzymatic amination once again provided an alter-
native to traditional chemical synthesis and an ability to circum-
vent these shortcomings. The commercially available @-TAm,
ATA-036, was able to aminate a 4-piperidone precursor 32 with
DKR, producing the penultimate intermediate to an SMO
inhibitor. The reaction proceeded with an 85% yield and
excellent enantioselectivity for the desired (2R,4R)-amine
(>99% ee)''® (Figure 9).

Deracemization can also be brought about by employing
stereocomplementary enzymes. For example, an (R)-selective
TAm acts on a racemic amine mixture forming a ketone product
and the unreacted (S)-isomer. A similar enzyme with the oppo-
site enantiopreference [i.. (S)-w-TAm] then converts this
ketone product back into the (S)-isomer. In this way, the initial
mixture has been deracemized, producing an enantioenriched
(S)-isomer solution. Such a concept has been developed by a
number of groups.''*'"?

0
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Figure 6. KR of rac-sec-butylamine to (R)-sec-butylamine using w-TAm from B. megaterium.’
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The Kroutil group developed a method using this approach
for the deracemization of the chiral orally effective antiarrhy-
thmic agent, mexiletine”” 33. Both the (S)- and (R)-isomers were
prepared from the commercially available racemate 1-(2,6-
dimethylphenoxy)-2-propanamine. Only (R)-mexiletine binds
preferentially to cardiac sodium channels, and it was prepared in
99% ee with 97% isolated yield. ATA-117 was employed as an
(R)-selective w-TAm, with a number of (S)-selective w-TAms
used, from species including C. violaceum, as well as V. fluvialis
and B. megaterium.

In order to produce (R)-mexiletine, an (S)-selective @-TAm
was used to produce the (R)-enantiomer from rac-mexiletine by
KR, as well as forming the corresponding ketone via reaction
with the (S)-enantiomer. This ketone was then converted back
to (R)-mexiletine using the (R)-selective @w-TAm, ATA-117.
If desired, (S)-mexiletine could be formed using the same

method but by reversing the order in which the stereo-
complementary @-TAms were employed (Figure 10).

For the first reaction, pyruvate was used as an amine acceptor.
The alanine formed was converted back to pyruvate using amino
acid oxidase (AAO), meaning only small amounts of pyruvate
would be needed. For the second reaction, when alanine was
needed as an amine donor, two complementary systems
were employed for pyruvate removal. AlaDH and LDH systems
were both used in combination with an NADH recycling system.
After the first reaction, a heat treatment was performed in order
to avoid interference from stereocomplementary @-TAms,
before the enzyme for the second reaction was added. The
efficiency of this step was improved further through immobiliza-
tion of the w-TAm used in the first step by encapsulation
in a sol—gel/Celite matrix, and simply removing it prior to the
second step.'*’
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The combination of w-TAms with other enzymes in multistep
reactions can also be used for deracemization of amines. Using a
stereoselective AAQO, a racemic amine can be converted to a
ketone and an unreacted enantiomer. A @w-TAm with opposite
stereopreference can aminate the ketone product of the first
reaction, resulting in a sample of optically active amine. A similar
approach was used in the preparation of a key intermediate in
glucagon-like peptide-1 (GLP-1) mimics, potential therapeutics for
type II diabetes. > Using an (R)-AAQ from Frigonopsis variabilis
and an (S)-w-TAm from Burkholderia sp., the desired (S)-amino
acid product was prepared in 73% yield and 99.9% ee.'”’

An (S)-AAO from Proteus mirabilis in conjunction with an
@-TAm from Bacillus thuringiensis has been used to produce
D-amino acids from a racemic mixture, using racemic alanine as
an amine donor."*” Such an approach has the potential to yield
high value pharmaceuticals, with p-amino acids forming the
building blocks of a number of therapeutic agents, including
P-lactam antibiotics and calcitonin gene-related peptide antago-
nists for migraine treatment.' >

3. CASCADE REACTIONS WITH OTHER ENZYMES

Examples combining TAms with common chemical steps
(ie. chemoenzymatic synthesis) have been discussed. TAms can
also be combined with other enzymes, not only for process
enhancements such as byproduct removal but for synthesis
of desired compounds such as APIs as well. The coupling
and combining of ®-TAms with other enzymes has progressed
beyond mere multistep operations, replaced in many cases
by elegant one-pot cascade systems. These processes have been
refined to a high level of efficiency and are opening doors to new

and exciting biocatalytic opportunities.”* Such enzyme-initiated
domino reactions have been reviewed in detail, including those
where TAms play a pivotal role.">'**~"*”

One-pot cascade reactions allow for much greater versatility in the
starting material used in the biocatalytic production of chiral amines.
Instead of using chemical synthesis to manufacture a prochiral
ketone, the advantages of biocatalysis can be exploited for this step as
well. For example an alcohol 34 could be used as a starting material
and oxidized to form a ketone using a galactose oxidase enzyme, as
shown by Fuchs et al.'”" This afforded the prochiral ketone 35 at the
expense of molecular oxygen, with only water formed as a byproduct
(Table 2). Use of horseradish peroxidase (HRP) and 2,2’-azino-
bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) ensured over-
oxidation was avoided. Using alanine as an amine donor, this pro-
vides another instance of pyruvate removal using AlaDH coupled
with an NADH/FDH/GDH recycling system.

Depending on the alcohol substrate, aldehydes were often
produced as a result of the oxidation reaction. These interme-
diates were duly aminated, further demonstrating the versatility
of TAms. Due to the relative lack of information on amination of
aldehydes versus their ketonic counterparts, a study of ben-
zaldehyde amination was carried out to assess the suitability of a
number of @-TAms.'"" Vf-0-TAm was deemed to be the most
suitable, converting benzaldehyde to benzylamine with 96%
yield. A series of benzyl and cinnamic alcohols were screened
for oxidation and subsequent amination. The applicability of
the process to pharmaceutical manufacture was demonstrated
by the formation of the chiral amine 2-phenylallylamine, an
intermediate molecule for the potent antifungal naftifine'®" 36
(Table 3).
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Table 2. Cascade Reactions in the Production of Pharmaceuticals Involving @-TAms"
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“Other enzymes in the cascade are highlighted in red.

The amination of starting materials other than prochiral
ketones using one-pot cascades represents an important step
forward in biocatalysis, providing exciting opportunities for chiral

amine synthesis.

A similar concept was applied in the synthesis of both
norephedrine and norpseudoephedrine, molecules used as a
stimulant and decongestant.'”* With the use of benzaldehyde
and pyruvate as substrates, an acetohydroxyacid synthase I
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Table 3. Examples of APIs in Whose Syntheses TAms Have Been Applied

Z
z

O%
NH.

3

Levetiracetam 24 Naftifine 36

[Reference] [Reference] [Reference] [Reference]
o NH [49] [49] [53] [89]
/
o
[
N
Dilevalol 9 Formoterol 10 Ramatroban 11 (S)-Rivastigmine 23

[108] [101] [137] [137]

Perindopril 60 Saxagliptin 61

(AHAS-T) enzyme was combined with a TAm in a one-pot, two-
step reaction. In the first step, pyruvate 37 is decarboxylated and
subsequently ligated to benzaldehyde 38, yielding (R)-phenyl-
acetylcarbinol 39. In the second step, an (S)-selective @-TAm
can be used to prepare (1R,2S)-norephedrine 40, whereas an
(R)-selective »-TAm can be used to form (1R,2R)-norpseudoe-
phedrine 41 (Table 2). By employing alanine as an amine donor
for the amination reaction, an elegant system is created whereby
the pyruvate byproduct, instead of being removed, is simply
recycled for use in the lyase-catalyzed reaction.'”

Using similar starting materials but employing a different
enzymatic approach, a single diastereomer of 2-amino-1,3,4-
butantriol (ABT) 42 was synthesized, starting from hydroxypyr-
uvate 43 and glycoaldehyde'*” 44. Amino alcohols such as ABT
make excellent building blocks for many syntheses due to their
dual amino-alcohol functionality, with the ABT moiety found in
such pharmaceuticals as the protease inhibitor Nelfinavir.'*’
In this case, a transketolase (TK) enzyme was combined with
a TAm in a single Escherichia coli host. The TK-catalyzed
C—C bond formation yielded vr-erythrulose 45, from which a
P-alanine:pyruvate TAm could form the desired ABT'? (Table 2).

A TK has also been combined with a TAm from C. violaceum
for the formation of a pharmaceutically relevant amino alcohol *°
46. TK from E. coli was able to convert achiral substrates propanal
47 and hydroxypyruvate 43 to (3S)-1,3-dihydroxypentan-2-one
48, which was subsequently converted to (2S,3S)-2-amino-
pentane-1,3-diol 46 in a TAm-catalyzed reaction using IPAm as
amine donor'*° (Table 2).

Other amino alcohols have been employed as intermediates
for antiviral glycosidase inhibitors and antibiotics such as
chloramphenicol."*" As well as TKs, carbonyl reductase enzymes
(CREDs) have been combined with TAms in order to form these
valuable building blocks. Kohls et al. reported a biocatalytic
method using a CRED/w-TAm cascade, allowing selective
access to all four diastereomers of 4-amino-1-phenylpentane-2-
ol'** 49. Using either a 1,3-diketone or a 1,3-hydroxy ketone
(f-hydroxy ketone) SO as a starting material, this method pro-
vided a step efficient approach to 1,3-amino alcohol production,
avoiding the need for a transition metal catalyst. Depending on
the selectivities of the respective CRED and w-TAm chosen, any
of the four diastereomers could be prepared'** (Table 2).

The ability to manipulate individual stereogenic centers with
carefully chosen biocatalysts is further exemplified in the work by
the Bornscheuer group. In a cascade involving enoate reductases
(EREDs), the enantiopreference of @-TAms can be exploited
to access the desired isomers of ring-substituted exocyclic
amines. > It was shown that protein engineering of the active site
of the V. fluvialis ATA brought about substantially improved
selectivity toward either diastereomer, via amino acid mutation at
a single site. Initially, the TAm used in this cascade showed only
a modest preference toward the (R)-configuration (14% de).
Mutation of the leucine residue at position 56 caused substantial
changes in selectivity, with mutant LeuS6Val exhibiting and
higher (R)-selectivity (66% de), while mutant LeuS6lle caused
a switch in preference toward the (S)-configuration (70% de).
Moreover, addition of 30% DMSO increased selectivity further,
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producing (1R,3S)-1-amino-3-methylcyclohexane 51 with 87%
conversion and 89% de'**(Table 2).

®-TAms have been combined with both hydrolases in the
production of 2-(3-aminocyclohexyl)acetic acid derivatives,
valuable synthons for potential modulators of the multidrug
resistant protein, MRP1."** In work carried out by the Kroutil
group, bicyclic diketones 52 were hydrolyzed to keto acids 53,
which underwent lipase-catalyzed esterification before subse-
quent amination using a TAm to the desired 3-substituted
cyclohexylamine derivatives'** 54 (Table 2). As seen in previous
examples, the enantiopreference of w-TAm determined which
diastereomer was formed, providing much more control versus
chemical means involving an imine reduction. (R)-selective
ArMut11-w-TAm was able to produce the cis diastereomer with
up to 91% conversion in 24 h (>99% ee). (S)-selective His-Vf-w-
TAm was used to prepare its trans counterpart, albeit at a slower
rate of 71% over 96 h (>99% ee). Additionally, this study reported
the ability of ArMutl11-w-TAm to provide up to 81% conversion
over 24 h (>99% ee) in the presence of organic solvent diiso-
propyl ether (DIPE)."**

The progression of such cascades to include multiple enzymes
is illustrated exquisitely in a one-pot method for the deracemiza-
tion of primary amines'>> §5. In this example, primary amines are
deracemized using (S)-selective monoamine oxidase (MAO-N)
enzymes, in combination with an (R)-selective w-TAm to
aminate the ketone product 56 of the first reaction. In addition, a
catalase enzyme is used as a peroxide scavenger, as well as
employing the well-established LDH/GDH system for pyruvate
removal and cofactor regeneration respectively'*> (Table 2).
In all, this represents an elegant one-pot system combining five
biocatalysts, without affecting conversion or stereoselectivity.

A number of examples illustrating the application of enzymes
to produce prochiral ketones for TAm-catalyzed amination have
been discussed. However, cascades have also been developed in
which the TAm is involved in the initial step of the cascade,
producing an intermediate which undergoes subsequent trans-
formation by a different enzyme class.

The Turner group has developed another cascade involving
an MAO-N and an @-TAm. In this example, however, an
®-TAm aminates an achiral 1,4-diketone 57 the first step, with
the resulting pyrroline 58 undergoing a chemoenzymatic con-
version to a pyrrolidine $9 by MAO-N/NH;-BHj in the second
step136 (Table 2). MAO-N also acts selectively on the (S)-C2
center of the pyrrolidine, converting it back to the imine for
further nonselective reduction. In this way, the (R)-diastereomer
at the C2 center accumulates, producing an optically pure pyr-
rolidine following repeated cycles. The diastereomer formed at
the other stereocenter is determined entirely by the enantiopre-
terence of the w-TAm chosen for the first step. This approach
allows for control of which diastereomer is formed, circum-
venting the difficulties associated with using imine reduction.'*°

®-TAms have also been combined with @-TAms for the
amination of a-keto acids in the production of unnatural amino
acids"” (Table 2). Challenges included finding a substrate which
could simultaneously act as an amine donor for the a-catalyzed
amination as well as an amine acceptor for @-TAm-catalyzed
reaction. Upon investigation, L-homoalanine and its deaminated
derivative 2-oxobutyric acid were deemed to be the most effective
option. Access to L-amino acids was achieved by combining
branched-chain TAm from E. coli with an (S)-selective @-TAm
from Ochrobactrum anthropi, with the D-enantiomer accessed
with D-amino acid transaminase from Bacillus sphaericus and
(R)-selective ArRmut-»-TAm.

A number of important bioactives were formed using this
approach, including intermediates to the ACE inhibitor
perindopril 60 and antidiabetic drug saxagliptin 61 (Table 3),
as well as building blocks of antibiotics and drugs for the treat-
ment of HIV."*”

4. CONCLUSION AND OUTLOOK

It is clear that the use of TAms in pharmaceutical production has
progressed significantly in recent years, evolving from simple
KRs and asymmetric syntheses, through more complex multistep
processes, eventually expanding to elegant multienzyme one-pot
cascade systems. Ongoing research has facilitated the develop-
ment of innovative methods for overcoming product inhibition,
as well as systems with increased economic viability and the
discovery of novel biocatalysts with previously unreported
capabilities. Challenges within this area remain, however, with
unfavorable reaction equilibria and limited substrate scope
continuing to prove problematic. Rational protein engineering of
biocatalysts and the advent of “smart” amine donors have con-
tributed further to the potential of TAm-catalyzed production of
pharmaceuticals. Novel enzyme discovery, encompassing both a
metagenomic approach'”® and culture-based searches from
previously untapped environments,"*”'** may help to expand
the substrate scope and subsequent industrial applications
of TAms. The need for an expanded toolbox of (R)-selective
enzymes remains a challenge which may be overcome with con-
tinuing developments in rational design and the discovery of new
biocatalysts. The increasing demand for efficient and green
production of chiral amines in the pharmaceutical industry sug-
gests that the growth in TAm use is set to continue. Currently,
concepts for process-optimization have been combined and
refined to create efficient enzyme-driven systems, ensuring
TAms will continue to provide exciting opportunities for the
biocatalytic industry for years to come.
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