

Identification of a novel breast cancer molecular subgroup associated with a deficiency in DNA-damage response Jude M. Mulligan¹, Laura A. Hill¹, Steve Deharo¹, Fionnuala A. McDyer¹, Timothy S. Davison¹, Max Bylesjo¹, Noralane M. Lindor², Leeona Galligan¹, Thomas Delaney¹, Iris A. Halfpenny¹, Vadim Farztdinov¹, Kienan I. Savage³, Vitali Proutski¹, Katherine E. Keating¹, Jennifer E. Quinn³, Patrick G. Johnston^{1, 3}, Fergus J. Couch², D. Paul Harkin^{1, 3} and Richard D. Kennedy^{1, 3} ¹ Almac Diagnostics, Craigavon, Northern Ireland, UK; ² Mayo Clinic, Rochester, MN, USA; ³ Queen's University Belfast, Northern Ireland, UK

Introduction

• The loss of function of several DNA-damage response (DDR) genes has been reported in breast cancer.

• A dysfunction in DDR is exploited by DNA-damaging as well as novel targeted therapeutics such as PARP-1 inhibitors.

• Identification of those patients with DDR dysfunction could inform the selection of effective chemotherapeutic agents in the clinic.

• We report the identification of a novel molecular subgroup in • Following pathway analysis the most significant biology associated with breast cancer related to DDR deficiency (DDRD) that can be identified by a 44 gene signature (DDRD signature).

• The DDRD signature is a significant predictor of BRCA and Fanconi anemia (FA) mutational status as well as an independent predictor of response to neoadjuvant anthracycline-based chemotherapy.

Identification of DDRD molecular subgroup

• Unsupervised analysis of gene expression data was performed using the genes with the most variable expression.

• Estrogen receptor (ER)-positive and ER-negative cohorts were analyzed prevent the identification of an ER-independent subgroup.

response signaling.

• Since immune signaling has been reported to be modulated in response to DNA-damage [Rodier et al., Nat. Cell Biol. 11, 973-979 (2009)], we combined samples displaying up-regulation of genes related to these pathways to form a putative DDRD molecular subgroup, which can be identified by a 44-gene signature.

Materials and Methods

• Tumor material

107 macrodissected breast cancer FFPE samples were sourced from the Mayo Clinic, Rochester.

• Gene expression profiling

RNA was extracted from FFPE tumor samples using the Roche High Pure RNA Paraffin Kit and amplified using the NuGEN WT-Ovation[™] FFPE System. The amplified product was hybridized to the Almac Breast Cancer DSA.

• DNA-damage repair assays

HCC1937-EV and HCC1937-BR cells were mock irradiated or treated with 2Gy X-Rays. Cells were fixed and stained with anti-y-H2AX. Cells (100) were scored and those containing >6 γ-H2AX foci were scored positive.

• Assessment of PARP-1 inhibitor sensitivity

Cells were exposed to PARP-1 inhibitor for 12-14 days following which time colonies with more than 50 cells were counted.

• Assessment of cisplatin sensitivity

Cells were exposed to cisplatin for 96 hours and viability was assessed using a luminescent cell viability assay.

Α

B

- A cohort of 107 primary breast cancer FFPE samples enriched with 60 BRCA1 and BRCA2 mutant tumors was sourced from the Mayo Clinic.
- separately as the ER has a dominant effect on clustering which could
- both the ER-positive (probeset cluster 6, Figure 1A) and ER-negative (probeset cluster 3, Figure 1B) datasets related to interferon and immune

DDRD detects dysfunction in BRCA/FA pathway

• The signature significantly enriched for BRCA1/2 mutational status within the training set, with an area under the receiver operator curve (AUC) of 0.68 (CI = 0.56-0.78, p = 0.0021), (Figure 2A).

• The DDRD signature was also found to be able to distinguish between FA mutant and normal samples [Vanderwerf et al., Blood 114, 5290-5298 (2009)] with an AUC of 0.90 (CI = 0.76-1.00, P < 0.001) (Figure 2B) suggesting that the DDRD subgroup may encompass tumors with loss of the FA/BRCA pathway through multiple mechanisms.

DDRD signaling is intrinsic to the cell

• The DDRD signature was applied to BRCA1 mutant HCC1937 empty vector control cells (HCC1937-EV) and HCC1937 cells in which BRCA1, and thus DDR functionality, was corrected (HCC1937-BR) (Figure 3A). • DDRD signature scores were significantly higher within HCC1937-EV relative to HCC1937-BR cells (Figure 3B).

• Consistent with this, HCC1937-EV cells were more sensitive to cisplatin (Figure 3C) and the PARP-1 inhibitor KU0058948 (Figure 3D) relative to HCC1937-BR cells.

•The signaling detected by the DDRD signature is thus intrinsic to the cell and not a feature of immune infiltrate as confirmed by a lack of association (p = 0.1433) with immune infiltrate in the TRANSBIG breast cancer dataset [Desmedt et al., Clin. Cancer Res. 13, 3207-3214 (2007)].

Figure 1 **Clustering analysis of BRCA1/2** mutant and sporadic wildtype control

• Hierarchical clustering analysis of ER-positive (A) and ER-negative (B) BRCA1/2 mutant and sporadic wildtype control breast samples.

• Probeset cluster groups are annotated on the right-hand side and pathway analysis of each probeset cluster group is annotated on the left-hand side of each image.

Figure 2 DDRD signature is predictive of BRCA (A) and Fanconi anemia (B) mutational status

Figure 3 **DDRD** signature and therapeutic response in a BRCA1 isogenic cellline model

DDRD predictive of response to chemotherapy

• The DDRD signature's ability to predict response to DNAdamaging chemotherapeutics was assessed by application to data combined from 3 publicly available datasets [Tabchy et al., Clin. Cancer Res. 16, 5351-5361 (2010); Iwamoto et al., J. Natl. Cancer Inst. 103, 264-272 (2011); Bonnefoi et al., Lancet Oncol. 8, 1071-1078 (2007)].

• In each study, breast cancer patients were treated with neoadjuvant anthracycline-based regimens. Pathological complete response (pCR) or residual disease (RD) were used as clinical endpoints.

• The DDRD signature was shown to be significantly associated with response to anthracycline-based chemotherapy.

Prediction of pCR using DDRD signature									
Treatment	Sample Number	Clinical Outcome	AUC (CI)	ACC (CI)	SENS (CI)	SPEC (CI)	PPV (CI)	NPV (CI)	RR (CI)
FAC/FEC	203	pCR V RD	0.78 (0.7- 0.85)	0.76 (0.64- 0.83)	0.82 (0.69- 0.92)	0.58 (0.52- 0.62)	0.44 (0.36- 0.48)	0.90 (0.81- 0.95)	4.13 (1.94- 9.87)

DDRD signature is independent of clinical factors

FAC/ FEC	Univariate	Multivariate		
Variable	P value	P value		
DDRD signature	0.0000	0.0014		
ER	0.0004	0.0249		
Stage	0.0459	0.0492		
Grade	0.0010	0.0468		

Conclusions

• We describe a novel subgroup in breast cancer, deficient in response to DNA-damage.

• The DDRD subgroup is defined by immune signaling previously reported to be activated in response to persistent DNA-damage.

• The DDRD signature is capable of significantly predicting both BRCA and FA mutational status.

• The DDRD subgroup demonstrates sensitivity to DNA-damaging chemotherapy in breast cancer.

• The DDRD signature is a significant predictor of response to chemotherapy independent of other clinical factors.