

The story of ODM-204

NIPCF 2023

Fermion Today

Fully owned subsidiary of Orion Corporation

- New chemical entities for Orion's existing and new proprietary products
- Develops, manufactures and sells active pharmaceutical ingredients (APIs)
- Markets drug product contract manufacturing services of Orion

Fermion in 2022

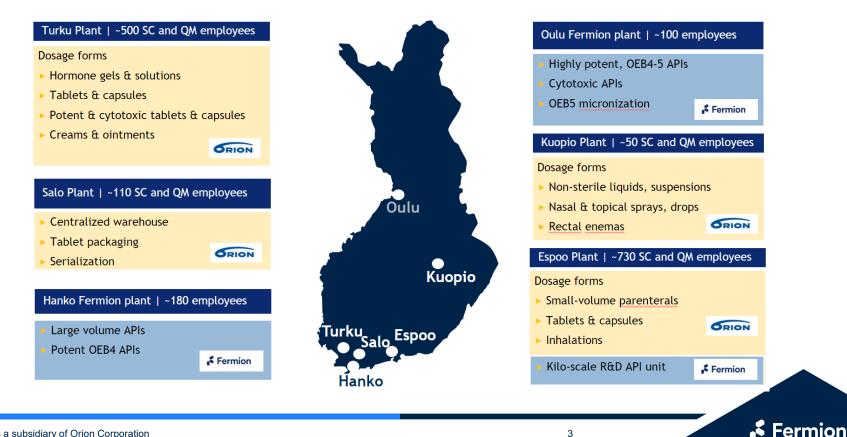
Net sales: EUR 122,2 million (+10 %)

• 56 % Internal, 44 % External

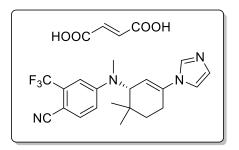
Main market areas are the United States, Europe, India, South Africa and Japan, > 200 customers

Ca. 30 products, both innovative and generic APIs

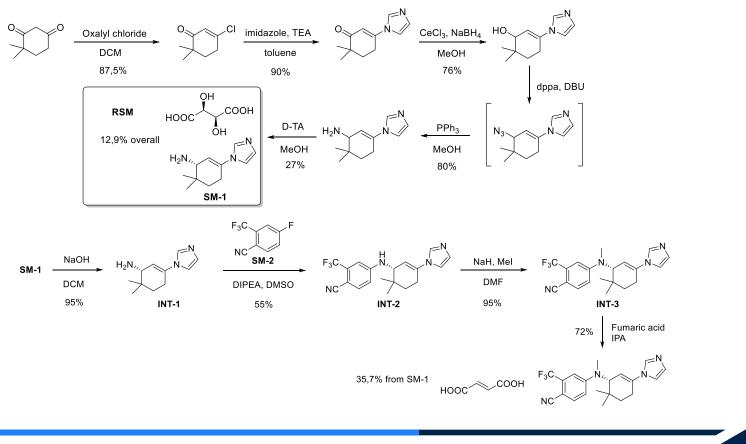
Head office, R&D, bench scale production, regulatory department in Espoo


Two commercial manufacturing sites: Hanko and Oulu

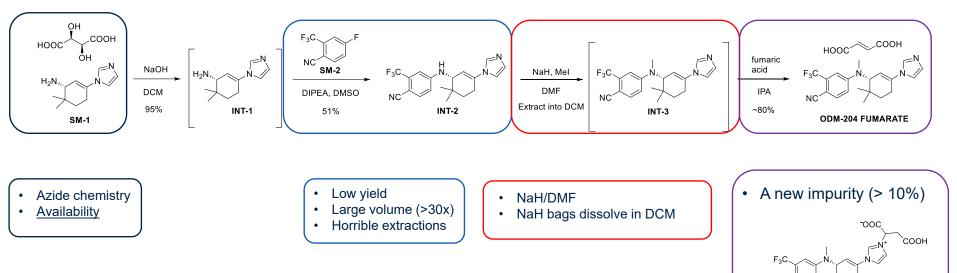
Personnel: ca. 380



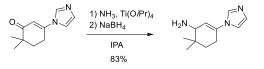
Locations And Facility Profiles



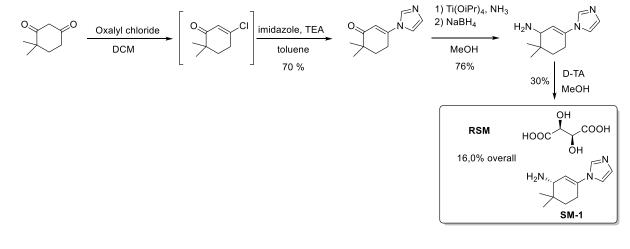
ODM-204


- Developed as a dual CYP17 / androgen receptor inhibitor for the treatment of prostate cancer by Orion
- Process development started at Fermion 2013
- Total of 5 GMP campaigns were conducted in addition of an initial technical campaign
- Terminated 2015

The route


🖡 Fermion

Technical campaign



SM-1

- Azide-chemistry, while fine for delivering the initial batches, was not deemed to be good enough for any further scale-up.
- Extensive testing showed that Lewis acid mediated condensation of ammonia with the ketone followed by reduction of the resulting imine is possible.

• Besides this major change, the process was streamlined

INT-1

INT-2

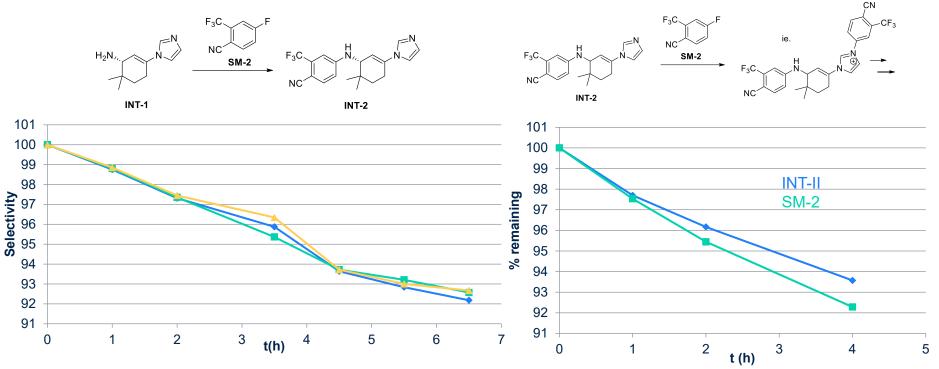
Initial:

- 1. Dissolve INT-1 in DMSO (5x).
- 2. Add SM-2 (1.02eq.) and DIPEA (2.0 eq).
- 3. Heat to $80 \pm 5^{\circ}$ C and hold for 8h.
- 4. Add DCM (17.5x) and water (18x) at 20° C.
- 5. Water (5.37x) is added slowly with vigorous agitation.
- 6. Separate and extract aq. layer twice with DCM (7.5x).
- 7. Wash combined organics with three times with water (7.5x).
- 8. Solvent swap to CPME (7.5x).
- 9. Cool to 0°C and isolate.

Optimized:

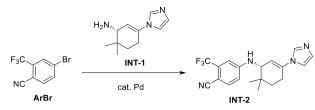
- 1. Dissolve INT-1 in DMSO (3.7x).
- Add SM-2 (1.03eq.), DIPEA (0.3eq.) and TMSOEt (1.18eq.).
- 3. Heat to $85 \pm 5^{\circ}$ C and held for 10h.
- 4. Cool to $15 \pm 5^{\circ}$ C.
- 5. Add EtOAc (3x), toluene (1.6x).
- 6. Add water (5.4x) slowly with vigorous agitation. Seed when about 50% of the water has been added.

Fermion


- 7. Cool to $7 \pm 3^{\circ}$ C and stir for 1h.
- 8. Isolate.

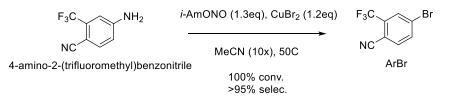
47-49%, >99.8 a-%

- High volumes and poor separations solved
- What about the yield?

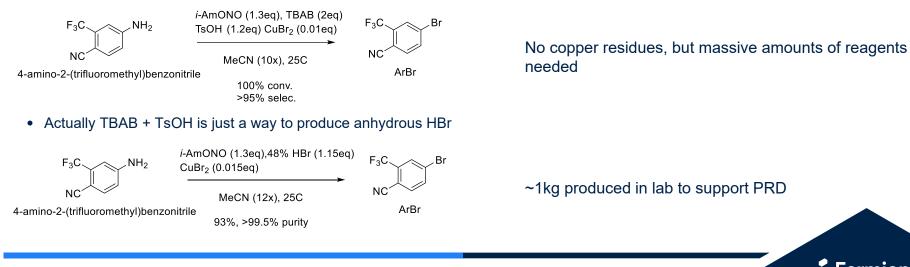


SnAr – reaction profile

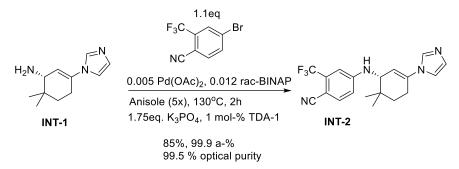
Much over 50% yield is not possible


Different coupling chemistry

- Preliminary Buchwald-Hartwig experiments seemed promising.
- ArBr was not available at the time (10g for ~800USD).
- Corresponding aniline is readily available and cheap.
 - Probably just a matter of demand.
- Whilst sourcing need to find a method to produce ArBr for process development.


Sandmeyer

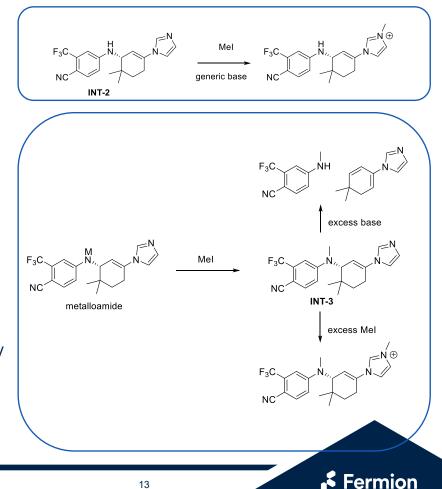
• After some experimentation the following conditions seemed suitable



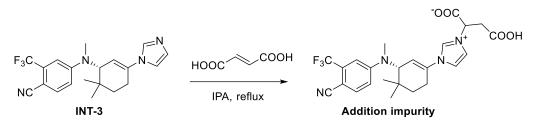
Cu residues very difficult to remove

• Following a paper with catalytic copper (Tetrahedron, 66, 2010, 7418-7422)

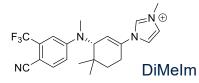
Buchwald-Hartwig coupling

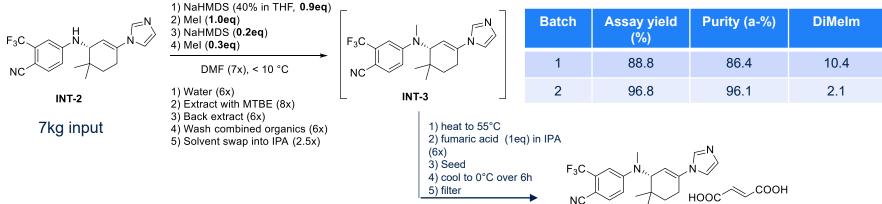

- 1. INT-1 is dissolved in anisole (5x) under nitrogen.
- 2. 4-Bromo-2-(trifluoromethyl)benzonitrile (1.1eq.), K₃PO₄ (1.75eq.) and TDA-1 (0.01eq.) are charged.
- 3. The mixture is degassed by repeated vacuum/nitrogen cycles.
- 4. Pd(OAc)₂ (0.005eq.) and rac-BINAP (0.012 eq.) are added.
- 5. The mixture is heated to 130°C over 1h and held for 2hrs.
- 6. The reaction is cooled to 75°C after which MeCN (1x) is added followed by water (4x).
- 7. The biphasic mixture is seeded if necessary and then cooled to 20°C over 2-3hrs.
- 8. The mass is further cooled to 0°C and stirred for 1-2hrs.
- 9. The mass is filtered and washed with water (3x) and cold IPA (3x).

Never scaled up ⊗


N-methylation

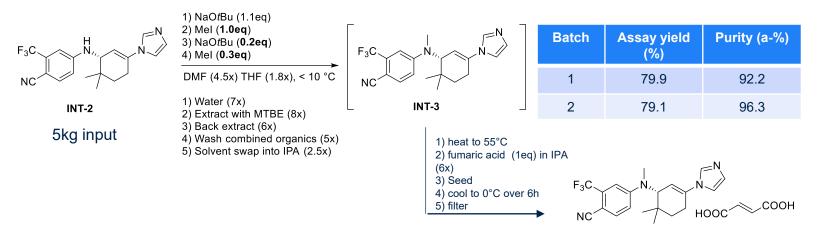
- Need to find alternative for NaH/DMF
- NaH is "special"
- · Considerations:
 - INT-2 has low solubility outside of "strong" solvents
 - INT-2 is difficult to purge conversion needs to be high
 - · Imidazole is much more nucleophilic than aniline
 - Stoichiometry is very important!
 - Two potential bases were identified: NaOtBu, NaHMDS
 - Small scale lab testing NaOtBu and NaHMDS ~equivalent
 - With NaOtBu all-around decomposition
 - With NaHMDS products related to elimination pathway




Addition impurity

- During the salt formation mixture of INT-3 and fumaric acid was heated to solution then concentrated by distillation (3h-5h duration)
- ~10% of addition impurity was formed during this distillation
- · Corrective action used in the GMP batches was to
 - dissolve INT-3 and fumaric acid separately
 - polish filter them separately
 - combine the solutions with seeding
 - immediately start cooling
 - -> addition impurity < 0.2 a-%

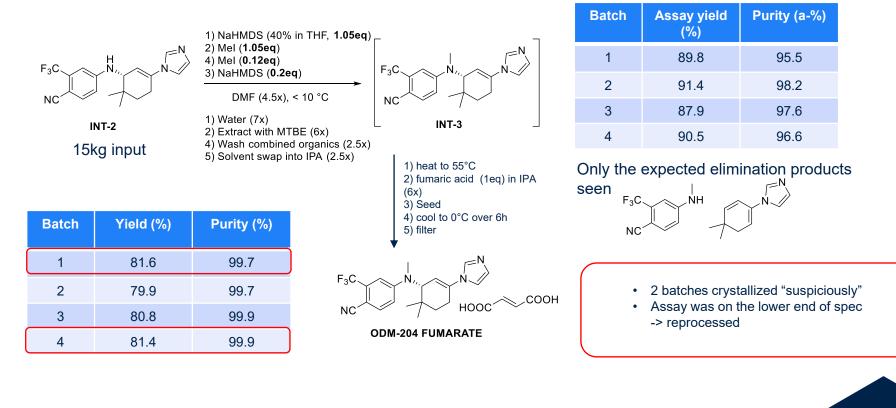
Endgame: 1st iteration


ODM-204 FUMARATE

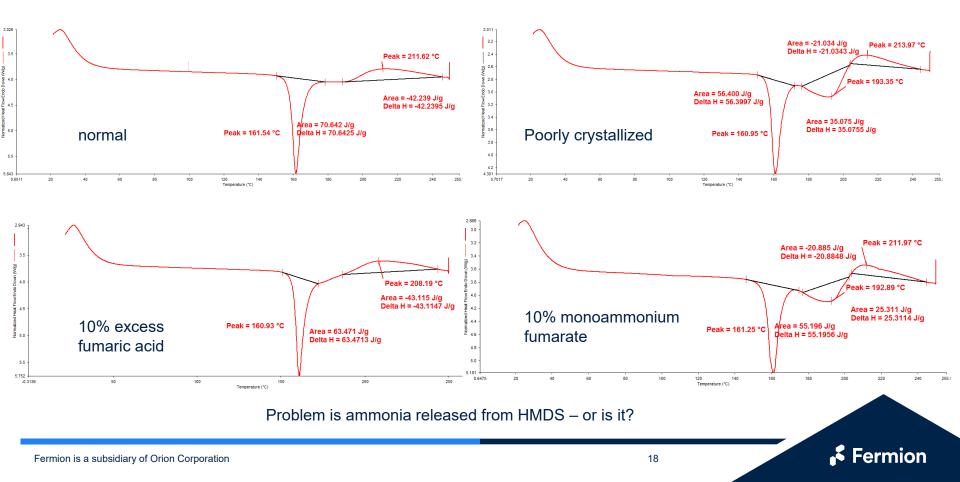
- Large amounts of DiMeIm indicates too large MeI charge in the 1st batch
- The second charges very small at this scale
- End product quality good

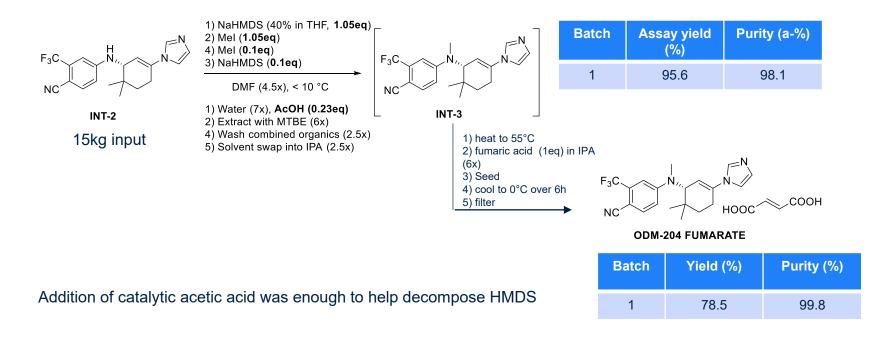
Batch	Yield (%)	Purity (a-%)
1	71.0	99.6
2	72.5	99.9

Endgame: 2nd iteration

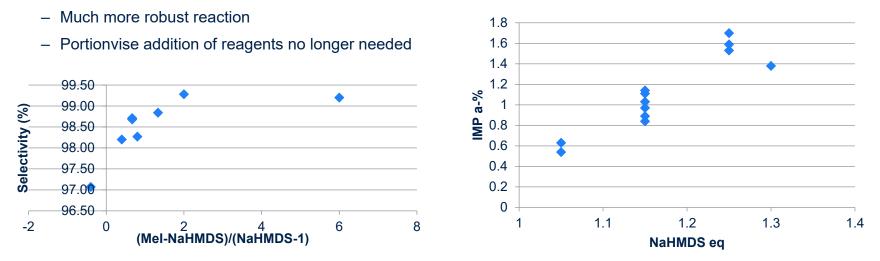

ODM-204 FUMARATE

- As expected NaOtBu produced whole spectrum of degradation products
- Dosing was even more difficult


Batch	Yield (%)	Purity (a-%)
1	72.7	98.3
2	77.1	99.2

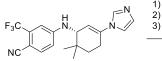

Endgame: 3rd iteration

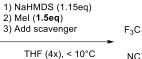
Strangely crystallized ODM-204

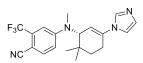

Endgame: 4th iteration

Further development

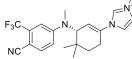
• Solvent change from DMF/THF to pure THF is possible – deprotonated INT-2 is highly soluble in THF




 Interestingly, excision of DMF from the process completely removed the ammonium fumarate problem


Fermion

Further development


• Overmethylation can occur with prolonged extractions due to presence of excess Mel -> introduce a quench

INT-3

INT-2

DiMelm

Mel (eq.)	Scavenger	Scavenger	Dimeim	Dimeim
		amount (eq.)	1h (a-%)	18h (a-%
1.5	None	-	0.76	4.30
1.5	Diethanolamine	0.5	0.21	0.27
1.5	Glycine	0.5	0.51	1.02
1.5	Diethanolamine	0.75	0.25	0.61
1.5	Imidazole	0.5	0.50	5.23
1.5	Ethylenediamine	0.5	0.51	1.14
1.2	Diethanolamine	0.3	0.0	0.57
1.5	Morpholine	1.0	0.12	0.10
1.5	Piperazine	1.0	0.25	0.28
1.2	Morpholine	0.3	0	0
1.45	Morpholine	0.4	0	0

Thank you

Fermion is a subsidiary of Orion Corporation

