

Filling the Armoury Making Antibody-Drug Conjugate Payloads

Jeremy Parker, Executive Director, Head of Early Chemical Development

Nordic-Irish Process Chemistry Forum 2023

07 June 23

A Beck, L Goetsch, C Dumontet, N Corvaia Nat. Rev. Drug Discov. 2017, 16, 315

ADC Payloads Mechanisms of Action

Chemotherapy Approaches:

- Alkylating antineoplastic agents
- Antimetabolites
- Anti-microtubule agents
- Topoisomerase inhibitors
- Kinase Inhibitors

ADC Payloads Marketed Drugs

ÓН HO,

- Key Challenges
 - Highly synthetic complexity/long routes
 - High containment facilities required for final stages
- Key Opportunities
 - Only small amounts required (vs potency)

W Goundry, J Parker Org. Process Res. Dev. 2022, 26, 2121

Early Payloads within Early Chemical Development at AstraZeneca

Classic Route Design

Classic Route Design Tubuvaline Synthesis

Classic Route Design Tubuvaline Synthesis

Classic Route Design Tubuvaline Synthesis

J Parker, M McCormick, D Anderson, B Maltman, L Gingipalli, D Toader Org. Process Res. Dev. 2017, 21, 1602

Route Design to Minimise High Containment

Route Design to Minimise High Containment Tesirine (SG3249) High Cor

High Containment Steps

A Tiberghien, C von Bulow, C Barry, H Ge, C Noti, F Collet Leiris, M McCormick, P Howard, J Parker Org. Process Res. Dev. 2018, 22, 1241

Route Design to Minimise High Containment Tesirine (SG3249) High Cor

High Containment Steps

Can we redesign the synthesis to reduce the number of High Containment steps?

A Tiberghien, C von Bulow, C Barry, H Ge, C Noti, F Collet Leiris, M McCormick, P Howard, J Parker Org. Process Res. Dev. 2018, 22, 1241

Route Design to Minimise High Containment Tesirine (SG3249)

A Tiberghien, P Howard, W Goundry, M McCormick, J Parker J. Org. Chem. 2019, 84, 4830

Route Design using New Methodology

Entry	Catalyst	Additive	Additive eq.	Solvent (20 vols)	HPLC Area% (220nm)			
					Product	Isomer	Starting Material	Other Peaks
1	Grubbs I	none		PhMe	7.7	12.4	77.9	2.0
2	Grubbs I	Et₃SiH	1.00	PhMe	12.3	11.0	49.1	27.7
3	Grubbs II	none		PhMe	14.5	2.7	71.1	11.7
4	Grubbs II	none		MeOH	46.2	52.4	0.0	1.4
5	None	Fe(CO) ₅	3.00	CPME	0.0	0.0	70.1	29.9
6	Crabtrees Catalyst	none		PhMe	12.1	0.5	78.8	8.6
7	Crabtrees Catalyst	none		IPA/PhMe	29.2	36.9	0.0	33.9
8	$Ru(H_2)(PPh_3)_4$	None		PhMe	0.0	0.0	95.2	4.8
9	RuHCI(CO)PPh ₃	none		PhMe	26.4	68.6	0.0	5.0
10	cationic CpRu(Pr ₃)	none		PhMe	25.2	71.4	0.0	3.3
11	RhH(CO)PPh ₃	none		PhMe	6.3	38.6	50.3	4.8
12	RhCl ₃ .H ₂ O	none		nBuOH	0.0	0.0	0.0	100.0
13	Rh(COD) ₂ BF ₄	BINAP	0.05	PhMe	25.1	56.6	0.0	18.3
14	Pd/C	none		PhMe	0.0	0.0	99.7	0.3
15	${Pd(\mu-Br)[P(tBu)_3]}_2$	none		PhMe	89.5	5.7	0.0	4.8
16	PdCl ₂ (dtbpf)	Et ₃ SiH	0.10	PhMe	20.5	64.4	0.0	15.2
17	Pd(MeCN) ₂ Cl ₂	none		PhMe	0.0	0.0	91.4	8.6
18	Pd(OAc) ₂ /PhS(O)(CH ₂) ₂ S(O)Ph	none		PhMe	0.0	0.0	93.5	6.5

(-23.6kJ/mol)

A Campbell, S Tomasi, A Tiberghien, J Parker Org. Process Res. Dev. 2019, 23, 2543

Acknowledgements

AstraZeneca Medimmune Spirogen Novasep Lorraine Graham Marc McCormick Matt Welham Will Goundry Dorin Toader Arnaud Tiberghien Luke Masterton Conor Barry Christina von Bulow Philip Howard Wuxi

David Anderson Alistair Hay Beatrice Maltman Lynn O'Neill Rachel Slater Steve McIntyre Ruth Bell

Lonza

Almac

Gregoire Bonvin Laurent Ducry Marcel Suhartono Andreas Peer Christian Noti Sandrine Ballot Bertrand Cottineau Valerie Gauguelin Nicolas Keriel Florence Leiris

Elfyn Jones Mikael Hillgren Alf Eriksson

Dai Kuangchu Jianhui Sun/ Youchu Wang – Jianqian Zhang

TAND

Jianbo Yang Heng Song Yuan Cong

Huajun Ge

Asymchem

Pharmaron