

Robust Biocatalyst Discovery and Applications

Nordic-Irish Process Chemistry Forum 2023

Helen C. Hailes Department of Chemistry, University College London

Biocatalysis

Transaminases (TAms) **UC**

- Co-factor PLP and amine donor required e.g. S-αmethylbenzylamine (MBA), isopropylamine, or alanine.
- Using them in single enzyme transformations and enzyme cascades.

Mechanoenzymatic reactions

- Mechanochemical reactions have emerged as a green synthetic method as reactions can be performed more rapidly and using less solvent
- To date very few mechanoenzymatic reactions have been described – hydrolytic reactions
- These have been explored for the first time with TAms
- Reaction parameters to explore include: frequency of milling, milling time and aging period
- Also, what form the biocatalyst is in.....

Mechanoenzymatic reactions

3b

2b

4b

■50 mM, ball mill, whole cell

5b

6b

30

20 10

0

1b

8b

7b

9b

■100 mM, ball mill, whole cell

10b

11b

12b

Shaken, not stirred worth exploring more widely

E. M. Carter, E. Ambrose-Dempster, J. M. Ward, T. D. Sheppard, H. C. Hailes, Green Chem., 2022, 24, 3662

- Enrich or select wild type bacteria
- Synthetic genes: plants, fungi, extremophiles
- Metagenomics (culture independent)
- Genome mining Bioinformatics: bacterial genomes, archaeal genomes, eukaryotic genomes.
- Enzyme mutagenesis but you need a good starting point

[•]UCL

Clone,

Screen

Searching for new enzymes - metagenomics

Why use metagenomics?

New Enzymes: Functional Metagenomics

- Isolation of genes from organisms in an environment

metagenomic sample, the database can be searched for other enzymes

Tongue metagenome library

J. W. E. Jeffries, N. Dawson, C. Orengo, T. S. Moody, D. J. Quinn, H. C. Hailes, J. M. Ward, *ChemistrySelect*, **2016**, *1*, 2217

TAms from tongue metagenome

- Roche sequencing 15 putative class III transaminases, 11 successfully retrieved and cloned.
- A range of different substrates and amine donors screened which highlighted 3 for further study.

D. Baud, J. W. E. Jeffries, T. S. Moody, J. M. Ward, H. C. Hailes, *Green Chem.*, **2017**, *19*, 1134

Â

TAms from tongue metagenome

Tongue metagenome: Carbonyl reductases (SDRs) 🛎 🚺 🧲 📘

- Tongue metagenome *in silico* search: 38 short chain dehydrogenases (SDRs) selected
- 37 successfully cloned and expressed
- 6 SDRs showed good activity against a range of substrates

SDR-17

Ê U C

- SDR-17 had the best stereoselectivity towards the Wieland-Miesher ketone

- Preparative scale 50 mL volume

S. A. Newgas, J. W. E. Jeffries, T. S. Moody, J. M. Ward, H. C. Hailes, Adv. Syn. Catal., 2021, 363, 3044

The drain metagenome

- Blocked domestic drain source of microbial mass and a lot of biomass.
- Hair/biomass removed and metagenomic DNA extracted
- DNA sequenced using Illumina MiSeq and contigs built in silico 219,776 contigs containing 307,101 genes

- 36 Class III TAms identified

- 29 successfully
 - expressed in *E.* coli
- 19 displayed
 - **activities** against substrates

Substrate

- 12 of the most versatile TAms
 were explored in more detail
 against a range of substrates
- 3 selected for further studies

L. Leipold et al, Green Chem., 2019, 21, 75

NBoc

75%

13%

32%

 H_2N

pQR2189

pQR2191

pQR2208

3 most productive TAms
explored with further
substrates using IPA as
the amine donor

L. Leipold *et al*, *Green Chem.*, **2019**, *21*, 75¹⁷

- Highlights the value of using metagenomics for biocatalyst discovery from niche environments
- One of the most robust native transaminases described to date
- Enzme-preparative scale reactions performed (50 mL scale). Yields up to 100% (82% isolated yield, >99% ee)

Bio-derived Feedstocks: Sugar Beet Pulp

Upgrading biomass to aminopolyols

acyclic aminopolyols, e.g.

^[a]Reaction at 30 °C rather than 45 °C; ^[b]Reaction in the presence of 25% of DMSO

F. Subrizi, L. Benhamou et al, Angew. Chem. Int. Ed., 2019, 58, 3854

Ene-reductases (ERs) : Drain metagenome

- **10 putative ERs** identified from the drain metagenome

Â

- 9 were successfully amplified from the drain metagenomic DNA
- 7 were classical ERs and 2thermophilic-like and they were expressed in *E. coli*

O R R	EF	s	O , NR		
R = H 1 R = Me 2	NADPH	NADP ⁺	R = H 3 R = Me 4		
NADPH recycling					

	3	4	
ERs	Yield [%]	Yield [%]	ee [%]
pQR1907	83	> 99	90 (<i>R</i>)
pQR1908	76	90	99 (<i>R</i>)
pQR1909	80	> 99	92 (<i>R</i>)
pQR1439	0	0	-
pQR1440	70	87	92 (<i>R</i>)
pQR1442	72	86	90 (<i>R</i>)
pQR1443	29	39	83 (<i>R</i>)
pQR1445	84	> 99	99 (<i>R)</i>
pQR1446	82	98	83 (<i>R</i>)
NCR	65	69	99 (<i>R</i>)

Ene-reductases (ERs) : Drain metagenome

- Co-solvent tolerance was investigated with dehydrocarvones
- Enzymes co-expressed with cofactor recycling enzymes G6PDH

Ene-reductases: Drain metagenome

- ERs used with sterically challenging substrates and on a preparative scale

Norcoclaurine Synthase (NCS)

- Several NCSs known (e.g.*Tf*NCS, *Cj*NCS2 and *Ps*NCS)
- Small enzyme (22 kDa for monomer)
- Crystal structures solved for *Tf*NCS (△33C196*Tf*NCS)
- 'dopamine first' mechanism

A. Ilari *et al, J. Biol. Chem.*, **2009**, *284*, 897; H. Minami, F. Sato *et al, J. Biol. Chem.* **2007**, *282*, 6274; T. Pesnot *et al, Adv. Synth. Catal.*, **2012**, *354*, 2997; B. M. Ruff *et al Tetrahedron Lett.*, **2012**, 53, 1071; T. Pesnot *et al, Adv. Synth. Catal.*, **2012**, *354*, 2997; B. R. Lichman *et al FEBS J.*, **2015**, 282, 1137; B. R. Lichman *et al Biochemistry*, **2017**, *40*, 5269

Cascades using NCS: (S)-Trolline

UCL

- Extracted from flowers of *Trollus chinensis:* Anti-viral activity influenza virus A and B
- Anti-bacterial against respiratory bacteria e.g. *Staphylococcus aureus*, *Streptococcus pneumoniae*

J. Zhao et al, Chem Commun., 2018, 54, 1323

Transaminase-NCS Cascades

Crocodile oral metagenome

• Why do crocodile bites become infected? - oral bacteria!

- Visited a crocodile sanctuary to collect microbiome samples from the mouths of several crocodiles.
- Genome mining for novel enzymes
- Continuing to sequence metagenomes from a range of environments

Damien Baud Leona Leipold **Jianxiong Zhao Daniel Méndez-Sánchez Esther Ambrose-Dempster** Eve Carter

Laure Benhamou Fabiana Subrizi Maria Bawn Natalie Dawson

Dragana Dobrijevic Laure Benhamou Sophie Newgas Yu Wang

John Ward, Jack Jeffries, Christine Orengo, Tom Moody, Tom Sheppard

Support EPSRC, BBSRC, Almac, China Scholarship Council (CSC)-UCL Joint Research Scholarship UCL Deans Prize

Biotechnology and Biological Sciences Research Council

Engineering and Physical Sciences Research Council

© Ruby Wright