

Process Chemistry at the Interface of Chemistry and Biology

Andreas Liese

Nordic-Irish Process Chemistry Forum 2023, Belfast, 6.-8.6.2023

- introduction
- batch processes moving from aqueous to solvent free synthesis
- intensification of airation
- continuous processes
 of reaction sequences
- take home message

https://acswebcontent.acs.org/biotech/sanfrancisco2006.html

Differences: Chemocatalysis - Biocatalysis

R. Yuryev, A. Liese, ChemCatChem 2 (1) (2010) 103-107

Classification of Catalysis

R. Yuryev, A. Liese, ChemCatChem 2 (1) (2010) 103-107

TECHNICAL BIOCATALYSIS

TUHH

Similarities: Catalyst Preparation

R. Yuryev, A. Liese, ChemCatChem 2 (1) (2010) 103-107

Missing Technology Developments

passenger airplane

chemical reactor

today

100 years

ago

Technology Gap as Challenge

Change of Raw Material Base

Willrodt C, Karande R, Schmid A, Julsing M, Curr Opin Biotechnol 31, 2015, 52–62

Process Engineering and Integrated Biotechnology

fundamental understanding of the interaction of biotechnology, chemistry and process engineering to realize chemical / biological processes

- A development & adjustment of catalytic steps
 - new bio- /chemocatalysts
 - kinetics
- **B** directed adjustment to microenvironment
- **C** process engineering integration of catalytic steps and separation processes in a process sequence

mutliphase mass transport

A. Liese, K. Seelbach, C. Wandrey: Industrial Biotransformations, Wiley-VCH 2nd, **2006** B. O. Burek, A. W. H. Dawood, F. Hollmann, A. Liese, D. Holtmann, Front. Cat <u>2</u> (**2022**) DOI: 10.3389/fctls.2022.858706

Bioprocess Intensification Challenges

enzyme engineering

- limited specific activity
- unfavorable kinetics
- limited biocatalyst stability

process engineering

- unfavorable reaction thermodynamics
- selectivity in multistep reactions
- challenging reactants: poor water solubility, viscosity, volatility, foaming

Solution: combined approaches

		F
Q	12	
A CONTRACTOR	+	3 & V
1710 BE	- (Lan Z.

- complementary: *substrate inhibition*
 - → improve biocatalyst tolerance to the substrate and

- complementary: product inhibition
 - → improve biocatalyst tolerance to the product and in situ product removal
- synergistic: thermodynamic limitation
 - ➔ improve biocatalyst tolerance to substrate
 - to enable shift of equilibrium

TECHNICAL BIOCATALYSIS

B. O. Burek, A. W. H. Dawood, F. Hollmann, A. Liese, D. Holtmann, Front. Cat. (**2022**) DOI: 10.3389/fctls.2022.858706

Profen Synthesis by Arylmalonate Decarboxylase

Profenes

- α-arylpropionic acid derivates
- chirale,(*S*)-enantiomer is active
- 50 % yield by chemical synthesis

Non-steroidal anti inflammatory drugs (NSAID)

Asymmetric Biocatalysis

- up to 100 % yield
- > 99.5% ee
- fewer reaction steps
- mild reaction conditions
- environmentally friendly

Access to Malonates: Optimization of Synthesis

Saponification: The arylmalonic acid undergoes spontaneous decarboxylation

Hydrogenolysis: The side reaction can be suppressed!

Biocatalyst Preparation

Conditions:Test cell-lysate cell-lysate: 20 mM phenylmalonic acid, 200 mg Amino C2 Acrylate, 30°C, 500 rpm,, pH 8, 50 mL Test PEG600: 20 mM phenylmalonic acid, 9,96 g/L Amino C2 Acrylate, 30°C, 400 rpm,, pH 8, 50 mL, with and w/o10 %(v/v) PEG600.

(S)-Naproxen Biosynthesis

M. Aßmann, A. Stöbener, C. Mügge, S. K. Gaßmeyer, L. Hilterhaus, R. Kourist, A. Liese, S. Kara, *React. Chem. Eng.* **2017**, DOI: 10.1039/c7re00043j

TEC

ruhh

BIOCATALYSIS

inline Analytics of Diastereomers in Biocatalysis

Fesko K, Reisinger C, Schürmann M, van Assema F, Wolberg M, Mink D, Griengl H, Tetrah. 63(4) **2007,** 918ff 15

Solvents as Key Drivers

for Intensified Biocatalysis

comparison of typical starting material concentrations used in

- chemocatalysis
- biocatalysis

➔ data from publications in ChemCatChem vol. 12 (2020), issues 1–12

B. O. Burek, A. W. H. Dawood, F. Hollmann, A. Liese, D. Holtmann, Front. Cat. (**2022**) DOI: 10.3389/fctls.2022.858706

Substrate concentration range [mM]

Neat Conditions Where Reactants Become Solvents

change of kinetics

- high rate
- prone to inhibition
- effect on determination of kinetics
- reactants themselves become solvents

shift from concentrations to

- weight % (mol %)
- thermodynamic activities

Changing Reaction Media: Deep Eutectic Solvent (DES)

- + physicochemical properties are tuneable
- + natural precursors \rightarrow biodegradability
- + synthesis is straightforward and cheap

M. Pätzold, S. Siebenhaller, S. Kara, A. Liese, C. Syldatk, D. Holtmann, *Trends in Biotechnology* 37(9) (**2019**) 942-959

Prof. Dirk Holtmann

Application Principles of DES in Biocatalysis

(3) DES as 2-in-1 reaction medium \rightarrow Substrate(s) is part of the DES

M. Pätzold, S. Siebenhaller, S. Kara, A. Liese, C. Syldatk, D. Holtmann, *Trends in Biotechnology* 37(9) (**2019**) 942-959

Application Principles of DES in Biocatalysis

M. Pätzold, S. Siebenhaller, S. Kara, A. Liese, C. Syldatk, D. Holtmann, *Trends in Biotechnology* 37(9) (**2019**) 942-959

Influence of Water on DES Esterification

biphasic reaction systems

- \rightarrow saturated with water
- \rightarrow formed water in equilibrium with aqu. phase
- neat DES: water accumulates

(–)-menthol:lauric acid 3:1 mol/mol, m_{DES} = 0.5 g, 5 mg CRL, 700 rpm, T = 35°C, n = 3

TECHNICAL BIOCATALYSIS

21

M. Hümmer, S. Kara, A. Liese, I. Huth, J. Schrader, D. Holtmann, Mol. Cat. <u>458</u> (**2018**) 67-72 **CONT** M. Pätzold, A. Weimer, A. Liese, D. Holtmann, Biotechnol. Reports <u>24</u> (**2019**) DOI: 10.1016/j.btre.2019.e00333

Effect of Water Activity Controlled Esterification

→ water content of the DES is controlled during reaction

- \rightarrow optimal water levels generated with $a_w = 0.22 0.55$
- \rightarrow full conversion with $a_w = 0.32$ after 3 d

M. Hümmer, S. Kara, A. Liese, I. Huth, J. Schrader, D. Holtmann, Mol. Cat. <u>458</u> (**2018**) 67-72 **VILLE** M. Pätzold, A. Weimer, A. Liese, D. Holtmann, Biotechnol. Reports <u>24</u> (**2019**) DOI: 10.1016/j.btre.2019.e00333 ²²

DoE Based Process Optimization

BIOCATALYSIS

Comparison of Reaction Systems

Reaction system			Productivity g L ⁻¹ d ⁻¹		E-factor
	DES			205	2.2
	biphasic DES + water controlled water activity		133 443		1.8 1.1
E—fa	$nctor = \frac{m_{waste}}{m_{product}}$	bulk fine pharma	< 1 – 5 up to 50 up to 100		2

Fatty Acid Esters – NEAT Synthesis

K. Goldberg, K. Edegger, W. Kroutil, A. Liese, Biotechnol. Bioeng., 95 (2006) 192-198

Multiphase Reactor Types

L. Hilterhaus, O. Thum, A. Liese, Org. Proc. Res. Dev. 12 (4) (2008) 618-625

J.J. Müller, M. Neumann, P. Scholl, L. Hilterhaus, M. Eckstein, O. Thum, A. Liese, Anal. Chem. (2010) 82 (14) 6008 ²⁶

Comparison of Reactor Concepts

η = 6 mPa*s

nonpolar substrates & product

- all reactions: 0.4 weight-% Novo 435
 - "stirred tank": 1 L stirred flask, 60°C, 5 mbar

pilot plant scale

- "fixed bed": fresh enzyme
- "bubble column":
- "theoretical":

integrated Michaelis Menten equation:

 $TR_{n} = \frac{[S_{0}] - [S]}{v_{\max}} + \frac{K_{M}}{v_{\max}} \cdot \ln \frac{[S_{0}]}{[S]}$

L. Hilterhaus, O. Thum, A. Liese, Org. Proc. Res. Dev. 12 (4) (2008) 618-625

Comparison of Reactor Concepts

bubble column in pilot scale cuts reaction time by half

L. Hilterhaus, O. Thum, A. Liese, Org. Proc. Res. Dev. 12 (4) (**2008**) 618-625 **Solution** J.J. Müller, S Baum, L. Hilterhaus, M. Eckstein, O. Thum, A. Liese, Anal Chem. 83 (24) (**2011**) 9321

BI

Repetitive Batch @ High Viscosity @ 75 °C

L. Hilterhaus, O. Thum, A. Liese, Org. Proc. Res. Dev. 12 (4) (**2008**) 618-625 J.J. Müller, S Baum, L. Hilterhaus, M. Eckstein, O. Thum, A. Liese, Anal Chem. 83 (24) (**2011**) 9321

PROJECTS AND PRODUCTS: EXAMPLE

• Bubble Column Reactors for Enzymatic Esterification

- Efficient mixing of highly viscous mixture (solvent free).
- Avoids high mechanical stress on enzyme carriers and facilitates product water removal.
- \circ Pilot reactor put into operation in 2009.

O. Thum, L. Hilterhaus, A. Liese, **2008**, Ger. Pat. Appl. 102008004726.0, DE 2008P00002 O. Thum, L. Hilterhaus, A. Liese, **2008**, Ger. Pat. Appl. 102008004725.2, DE 2008P00003

FTIR Inline Analysis in 4-Phase System

J. Müller, M. Neumann, P. Scholl, L. Hilterhaus, M. Eckstein, O. Thum, A. Liese, Anal. Chem. <u>82</u> (**2010**) 6008 J. Müller, S Baum, L. Hilterhaus, M. Eckstein, O. Thum, A. Liese, Anal Chem. 83 (24) (**2011**) 9321

Intensification of Airation in Biocatalysis

Challenges

- mass transport limitation
- foaming
- high gas consumption
- biocatalyst deactivaton

Solutions in Literature

- bubbling with macrobubbles
- diffusive airation
- *in situ* generation of gas reactant
- overpressure

Intensification of Aeration

diameter ≤ 100 µm - fine bubbles

used in various fields

- aquaculture
- agriculture
- water treatment purposes

Keio University

Prof. Terasaka

K. Terasaka, A. Hirabayashi, T. Nishino, S. Fujioka, D. Kobayashi, *Chem. Eng. Sci.* **2011**, *66*, 3172.

Comparison of Bubble Properties

B. Thomas, D. Ohde, S. Matthes, C. Engelmann, P. Bubenheim, K. Terasaka, M. Schlüter, A. Liese, Biotechnol. Bioeng. 118 (1) (**2021**) 130-141, DOI: 10.1002/bit.27556

Variation of Power Input: Aerators

D. Ohde, B. Thomas, S. Matthes, S. Tanaka, P. Bubenheim, K. Terasaka, M. Schlüter, A. Liese, RSC Adv. 11 (7) (**2021**) 4087-4096 SPG = Shirazu-porous glas (Shiras = volcanic ash)

35

Oxygen Mass Transfer Performance

OTR =
$$k_L a \left(C^*_{O_2 sat} - C_{O_2}(t) \right)$$

reaction rate= $\frac{V_{max} \cdot C_A \cdot C_{O_2}}{K_{m, A} \cdot C_{O_2} + K_{m, O_2} \cdot C_A + C_A \cdot C_{O_2}}$

the lower the O₂ mass transfer rate, the slower the reaction rate occurs

T = 25° C, V = 300 ml, 500 ml glass double walled reactor, 86 mg/l BSA, 10 mM Na-acetate buffer pH = 5.3, 400 rpm pitch blade turbine

Comparison of Macro / Fine Bubble Aeration

• microbubble aeration with fine bubbles :

equal k_La performance results in higher yield of 75% after 3 h

T = 35° C, V = 300 ml, 500 ml glass double walled reactor, 0.04 mol glucose, 25 mg GOx, 0.5 mg catalase, pH stat. titration (1 M KOH), 400 rpm Rushton turbine

B. Thomas, D. Ohde, S. Matthes, C. Engelmann, P. Bubenheim, K. Terasaka, M. Schlüter, A. Liese, Biotechnol. Bioeng. 118 (1) (**2021**) 130-141, DOI: 10.1002/bit.27556

Intensified Airation: Enhanced Biocatalyst Stability

aeration with fine bubbles

significant increase in enzyme stability

& gas utilization

B. Thomas, D. Ohde, S. Matthes, P. Bubenheim, K. Terasaka, M. Schlüter, A. Liese, Cat. Sci. Technol. (**2023**) 13, 1098 GOx = glucose oxidase, ADH = alcohol dehydrogenase, GDH = glucose dehydrogenase

TECH

TUHH

BIOCATAL

Intensified Airation: Enhanced Biocatalyst Stability

• aeration with fine bubbles

significant increase in enzyme stability

& gas utilization

TECHNICAL BIOCATALYSIS

B. Thomas, D. Ohde, S. Matthes, P. Bubenheim, K. Terasaka, M. Schlüter, A. Liese, Cat. Sci. Technol. (**2023**) 13, 1098

Enzyme Stability as Function of k_L**a**

... and immobilization

B. Thomas, D. Ohde, S. Matthes, P. Bubenheim, K. Terasaka, M. Schlüter, A. Liese, Cat. Sci. Technol. (2023) 13, 1098

Establishment of Repetitive Batch

RBR

Rotating packed bed reactor is created.

FBG pore size 2 μm

Z. Percin, L. Kursula, P. Bubenheim, M. Schlüter, A. Liese, (2023) unpublished

Applicability of FB with Packed Bed in RBR

RBR

Rotating packed bed reactor is created.

FBG pore size 2 μm

reaction rate: increased 14.5 fold with fine bubble aeration

• significant increase in productivity

immobilized GOx 8.2 g (Resindion ReliZymeTM, 200-500 μ m, pore diameter of Resindion ReliZymeTM: 40 - 60 nm), 35°C, catalase: 20 U/L, 1000 rpm, 10 mM Na-acetate buffer pH 5.3, glucose 600 mM, V 200 mL, 1 vvm, saturation level of O₂ 21%

Z. Percin, L. Kursula, P. Bubenheim, M. Schlüter, A. Liese, (2023) unpublished

BIOC

Validation in Repetitive Batch

Rotating packed bed reactor is created.

FBG pore size 2 μm

- fine bubble airation leads to less gas consumption / foaming
- significant increase in **enzyme stability by fine bubbles**
- opens up **new operation windows** for biotransformations

Z. Perçin, L. Kursula, P. Bubenheim, M. Schlüter, A. Liese, (2023) unpublished

Flow Chemistry in Biocatalysis – A New Old Topic ?!

A. Liese, K. Seelbach, C. Wandrey: Industrial Biotransformations, Wiley-VCH 2nd, **2006**

Characterization of Fundamental Reactor Types

Springer Berlin Heidelberg (2018) 77-101

Characterization of Fundamental Reactor Types

S. Kühn, A. Liese, *Enzymreaktoren und Prozessführung,* in: Einführung in die Enzymtechnologie Springer Berlin Heidelberg (**2018**) 77-101

Appropriate Reactor For Continuous Synthesis

T. Stillger, M. Pohl, C. Wandrey, A. Liese, Org. Proc. Res. Dev. <u>10 (6)</u> (**2006**) 1172-1177 **BAL** = benzaldehyde lyase

Appropriate Reactor For Continuous Synthesis

T. Stillger, M. Pohl, C. Wandrey, A. Liese, Org. Proc. Res. Dev. <u>10 (6)</u> (**2006**) 1172-1177 **BAL** = benzaldehyde lyase

Redesign of Reactor Operation

50 mM TEA, 0.5 mM ThDP/MgSO₄

PFR -> CSTR

BAL = benzaldehyde lyase

Flow Chemistry: (R)-2-HPP Synthesis

T. Stillger, M. Pohl, C. Wandrey, A. Liese, Org. Proc. Res. Dev. <u>10 (6)</u> (**2006**) 1172-1177

One-pot Chemoenzymatic Reaction Sequence

Transfer from Solvent to Neat Kinetics (Aminolysis)

THF: Kinetics "as usual"

Neat: Kinetic parameters affected by solvent effects of reactants

S. Strompen, M. Weiss, T. Ingram, I. Smirnova, H. Gröger, L. Hilterhaus, A. Liese, Biotechnol. Bioeng. <u>109 (6)</u> (**2012**) 1479–1489

Selection of Continuously Operated Reactor Type

Application of kinetic model for prediction of enantiomeric excess

U. Kragl, A. Liese, Chem. Ing. Techn. 85(6) (2013) 826

Reactor Setup: Continuous Operation

S. Strompen, M. Weiss, H. Gröger, L. Hilterhaus, A. Liese, Adv. Synth. Cat. 355 (**2013**) 2391 U. Kragl, A. Liese, Chem. Ing. Techn. 85(6) (**2013**) 826

Overcoming Thermodynamic Limitations

J. A. Reich, M. Aßmann, K. Hölting, P. Bubenheim, J. Kuballa, A. Liese, Beil. J. Org. Chem. 18 (**2022**) 567-579

Process Intensification Challenges

Communication Challenges

multidisciplinarity

requires interdisciplinary understanding

Inspiring Youths Ages 8-18+ for STEM

STEM = Science, Technology, Engineering & Mathematics

School-Company STEM cooperation educational material & projects <u>www.nachwuchscampus.de</u>

Experiment boxes & projects 250 rentable boxes to 30 topics for 24 pupils/box in schools or companies www.kinderforscher.de

Take Home Messages

- *inline* analytics is key to process optimization.
- Consider biotransformations under **neat conditions**.
- Consider fine bubble airation to enhance stability and reduce gas consumtion.
- Continuous version of the batch is the plug flow reactor.
- Consider influence of reactor type on reaction selectivity.

Acknowledgements

Prof. S. Kara Prof. D. Holtmann Prof. M. Kaltschmitt Prof. M. Schlüter Prof. M. Skiborowski Prof. I Smirnova Prof. K. Terasaka Prof. H.K. Trieu

ABB

TECHNICAL

BIOCATALYSIS